151794 (733128), страница 6
Текст из файла (страница 6)
Таблица 4
Вид дисперсии | Величина дисперсии световода | |||
многомодового | одномодового | |||
ступенчатого | градиентного | |||
Волноводная | Малое значение | Взаимная компенсация | ||
Материальная | 2...5 нс/км | 0,1...0,3 нс/км | Малые значения | |
Межмодовая | 30...50 нс/км | 2...4 нс/км | — | |
Полоса частот | Десятки мегагерц | Сотни мегагерц | Тысячи мегагерц |
Сравнивая дисперсионные характеристики различных световодов, можно отметить, что лучшими обладают одномодовые световоды. Хорошие характеристики также у градиентных световодов с плавным изменением показателя преломления. Наиболее резко дисперсия проявляется у ступенчатых многомодовых световодов.
Рассмотрим пропускную способность ОК. В электрических кабелях с медными проводниками (симметричных и коаксиальных) полоса пропускания и дальность связи в основном лимитируются затуханием и помехозащищенностью цепей. Оптические кабели принципиально не подвержены электромагнитным воздействиям и обладают высокой помехозащищенностью, поэтому параметр помехозащищенности не является ограничивающим фактором. В ОК полоса пропускания и дальность связи лимитируются затуханием и дисперсией.
Затухание ОК растет по закону . В широкой полосе частот оно весьма стабильное и лишь на очень высоких частотах возрастает за счет дисперсии. Поэтому дисперсия и определяет ширину полосы пропускания частот. Из рисунка видно, что полоса пропускания одномодовых световодов существенно больше, чем ступенчатых и градиентных.
Рис. 9. Зависимость дисперсии ( ) и пропускной способности (
) ОК от длины линии
На рис.9 показан характер зависимостей дисперсии ( ) и пропускной способности (
) оптических кабелей от длины линии. Дисперсия приводит как к ограничению пропускной способности ОК, так и к снижению дальности передачи по ним (l). Полоса частот
и дальность передачи l взаимосвязаны. Соотношение между ними выражается формулами:
для коротких линий ( ), у которых уширение импульсов с длиной растет линейно,
для длинных линий ( ), у которых действует закон
изменения величины ширины импульсов,
где — дисперсия на 1 км;
— искомое значение дисперсии;
—длина линии;
—длина линии устанавливающего режима (5...7 км для ступенчатого и 10...15 км для градиентного волокна).
Километрическое значение полосы пропускания определяется величиной уширения импульсов:
Физические процессы в волоконных световодах
В отличие от обычных кабелей, обладающих электрической проводимостью и током проводимости , ОК имеют совершенно другой механизм — они обладают токами смещения
, на основе которых действует также радиопередача. Отличие от радиопередачи состоит в том, что волна не распространяется в свободном пространстве, а концентрируется в самом объеме световода и передается по нему в заданном направлении (рис.10).
Рис.10 Процесс передачи:
а—радиосвязь; б—волоконно-оптическая связь
Передача волны по световоду осуществляется за счет отражений ее от границы сердцевины и оболочки, имеющих разные показатели преломления . В обычных кабелях носителем передаваемой информации является электрический ток, а в ОК—лазерный луч.
В обычных широко используемых в настоящее время симметричных и коаксиальных кабелях передача организуется по двухпроводной схеме с применением прямого и обратного проводников цепи (рис.11).
Рис. 11. Передача энергии по двухпроводным (а) и волноводным (б) направляющим средам
В световодах, волноводах и других направляющих средах (НС) нет двух проводников, и передача происходит волноводным методом по закону многократного отражения волны от границ раздела сред. Такой отражательной границей может быть металл—диэлектрик, диэлектрик—диэлектрик с различными диэлектрическими (оптическими) свойствами и др.
Граница раздела двухпроводных (двухсвязных) и волноводных (односвязных) НС характеризуется в первую очередь соотношением между длиной волны и поперечными размерами направляющей среды
.
При должно быть два провода: прямой и обратный, и передача происходит по обычной двухпроводной схеме; в противном случае не требуется двухпроводная система, и передача осуществляется за счет многократного отражения волны от границ раздела сред с различными характеристиками. Поэтому передача по волноводным системам (световодам, волноводам и другим НС) возможна лишь в диапазоне очень высоких частот, когда длина волны меньше, чем поперечные размеры—диаметр НС.
Оптические микронные волны подразделяются на три диапазона: инфракрасный, видимый и ультрафиолетовый (табл.2). В настоящее время используются в основном волны длиной 0,7...1,6 мкм и ведутся работы по освоению ближнего инфракрасного диапазона: 2; 4; 6 мкм.
Таблица 2
Диапазон | ИКЛ | ВЛ | УФЛ |
f , Гц | 1012... 1014 | 10—14... 1015 | 1015... 1017 |
| 0,75...100 | 0,4...0,75 | 0,01...0,4 |
Таким образом, для передачи электромагнитной энергии применяются электрические оптические кабели, а также радиосвязь (табл.3).
Таблица 3 (Передача по электрическим (ЭК), оптическим (ОК) кабелям и радиосвязным каналам (РС) )
Среда передачи | НС | НС | ОС |
Ток | | | |
В разных системах используются различные среды (направляющая или открытая) и токи ( и
). Особенности этих НС связаны с частотными ограничениями при передаче энергии.
Принципиально различен частотный диапазон передачи по волноводным и двухпроводным системам. Волноводные системы имеют частоту отсечки — критическую частоту , ведут себя как фильтры ВЧ, и по ним возможна лишь передача волн длиной менее чем
. Двухпроводные системы свободны от этих ограничений и способны передавать весь диапазон частот — от нуля и выше.
Заключение
Открылись широкие горизонты практического применения ОК и волоконно-оптических систем передачи в таких отраслях народного хозяйства, как радиоэлектроника, информатика, связь, вычислительная техника, космос, медицина, голография, машиностроение, атомная энергетика и др. Волоконная оптика развивается по шести направлениям:
- многоканальные системы передачи информации;
- кабельное телевидение;
- локальные вычислительные сети;
- датчики и системы сбора обработки и передачи информации;
- связь и телемеханика на высоковольтных линиях;
- оборудование и монтаж мобильных объектов.
Многоканальные ВОСП начинают широко использоваться на магистральных и зоновых сетях связи страны, а также для устройства соединительных линий между городскими АТС. Объясняется это большой информационной способностью ОК и их высокой помехозащищенностью. Особенно эффективны и экономичны подводные оптические магистрали. Применение оптических систем в кабельном телевидении обеспечивает высокое качество изображения и существенно расширяет возможности информационного обслуживания индивидуальных абонентов. В этом случае реализуется заказная система приема и предоставляется возможность абонентам получать на экране своих телевизоров изображения газетных полос, журнальных страниц и справочных данных из библиотеки и учебных центров.
На основе ОК создаются локальные вычислительные сети различной топологии (кольцевые, звездные и др.). Такие сети позволяют объединять вычислительные центры в единую информационную систему с большой пропускной способностью, повышенным качеством и защищенностью от несанкционированного допуска.
Волоконно-оптические датчики способны работать в агрессивных средах, надежны, малогабаритны и не подвержены электромагнитным воздействиям. Они позволяют оценивать на расстоянии различные физические величины (температуру, давление, ток и др.). Датчики используются в нефтегазовой промышленности, системах охранной и пожарной сигнализации, автомобильной технике и др.Весьма перспективно применение ОК на высоковольтных линиях электропередачи (ЛЭП) для организации технологической связи и телемеханики. Оптические волокна встраиваются в фазу или трос. Здесь реализуется высокая защищенность каналов от электромагнитных воздействий ЛЭП и грозы. Легкость, малогабаритность, невоспламеняемость ОК сделали их весьма полезными для монтажа и оборудования летательных аппаратов, судов и других мобильных устройств.
В последнее время появилось новое направление в развитии волоконно-оптической техники — использование среднего инфракрасного диапазона волн 2...10 мкм. Ожидается, что потери в этом диапазоне не будут превышать 0,02 дБ/км. Это позволит осуществить связь на большие расстояния с участками регенерации до 1000 км. Исследование фтористых и халькогенидных стекол с добавками циркония, бария и других соединений, обладающих сверхпрозрачностью в инфракрасном диапазоне волн, дает возможность еще больше увеличить длину регенерационного участка. Ожидаются новые интересные результаты в использовании нелинейных оптических явлений, в частности соли тонного режима распространения оптических импульсов, когда импульс может распространяться без изменения формы или периодически менять свою форму в процессе распространения по световоду. Использование этого явления в волоконных световодах позволит существенно увеличить объем передаваемой информации и дальность связи без применения ретрансляторов.
Весьма перспективна реализация в ВОЛС метода частотного разделения каналов, который заключается в том, что в световод одновременно вводится излучение от нескольких источников, работающих на разных частотах, а на приемном конце с помощью оптических фильтров происходит разделение сигналов. Такой метод разделения каналов в ВОЛС получил название спектрального уплотнения или мультиплексирования.
При построении абонентских сетей ВОЛС кроме традиционной структуры телефонной сети радиально-узлового типа предусматривается организация кольцевых сетей, обеспечивающих экономию кабеля.Можно полагать, что в ВОСП второго поколения усиление и преобразование сигналов в регенераторах будут происходить на оптических частотах с применением элементов и схем интегральной оптики. Это упростит схемы регенерационных усилителей, улучшит их экономичность и надежность, снизит стоимость. В третьем поколении ВОСП предполагается использовать преобразование речевых сигналов в оптические непосредственно с помощью акустических преобразователей. Уже разработан оптический телефон и проводятся работы по созданию принципиально новых АТС, коммутирующих световые, а не электрические сигналы. Имеются примеры создания многопозиционных быстродействующих оптических переключателей, которые могут использоваться для оптической коммутации.
На базе ОК и цифровых систем передачи создается интегральная сеть многоцелевого назначения, включающая различные виды передачи информации (телефонирование, телевидение, передача данных ЭВМ и АСУ, видеотелефон, фототелеграф, передача полос газет, сообщений из банков и т. д.). В качестве унифицированного принят цифровой канал ИКМ со скоростью передачи 64 Мбит/с (или 32 Мбит/с).Для широкого применения ОК и ВОСП необходимо решить целый ряд задач.
К ним прежде всего относятся следующие:
- проработка системных вопросов и определение технико-экономических показателей применения ОК на сетях связи;
- массовое промышленное изготовление одномодовых волокон, световодов и кабелей, а также оптоэлектронных устройств для них;