151760 (733120), страница 2

Файл №733120 151760 (Пузыри в жидкости) 2 страница151760 (733120) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Эту энергию жидкость растратит на образование и движение завихрений. В конечном счете она превратится в тепло. Так как при равномерном движении

, то

.

Величину мы знаем и, следовательно, легко получим приближенную формулу, определяющую :

.

Последнюю формулу можно было бы получить, пользуясь соображениями о размерностях.

Вывод: при свободном всплывании пузырька в режиме ламинарного течения воды , а в режиме турбулентного течения . Это означает, что с ростом скорости всплывания при турбулентном течении сопротивление жидкости движению пузырька увеличивается быстрее, чем при ламинарном.

Итак, скорость, при которой ламинарное обтекание пузырька жидкостью сменится турбулентным, можно оценить, приравняв силы, тормозящие пузырек, , и относящиеся к ламинарному и турбулентному течениям. Из такого сравнения следует, что если выполняется условие , то пузырек всплывает в ламинарном режиме, а если - турбулентном. Для воды м2/с, а для воздуха м2/с. Пузырьки, имеющие радиус м, всплывают со скоростью м/с, т.е. м2/с, что существенно меньше, чем м2/с. Такие водяные пузыри всплывают «ламинарно». А мыльные пузыри, радиус которых м, падают со скоростью м/с. Значение м2/с существенно больше, чем м2/с и, следовательно, такие мыльные пузыри падают в турбулентном режиме.

2. Модельный опыт о флотации

Этот опыт иллюстрирует физическое явление, на котором основан технологический процесс, именуемый флотацией. Газовые пузырьки в этом процессе играют важную роль.

Флотация, а точнее флотационное обогащение - это процесс разделения совокупности двух видов мелких твердых частиц, отличающихся смачиваемостью той жидкостью, в которой они находятся, чаще водой. На поверхности частиц, которые будут плохо смачиваться жидкостью, будут закрепляться газовые пузырьки. Говорят так: образуется флотационный агрегат – частица и прилипшие к ней пузырьки газа. Если средняя плотность такого агрегата меньше плотности жидкости, он будет всплывать, вынося на поверхность жидкости частицы твердой фазы. Те же частицы, которые хорошо смачиваются жидкостью не будут на себе задерживать пузырьки газа, не сформируют флотационный агрегат, и, следовательно, осядут на дно. В этом процессе частицы первого и второго вида разделятся.

Принципиальная возможность разделения твердых частиц различных сортов с помощью всплывающих газовых пузырьков, широко используется для разделения частиц пустой породы в измельченной руде от частиц, богатых металлом. Именно поэтому явление флотации лежит в основе технологического процесса, используемого в горнорудных обогатительных фабриках.

К самой идее флотации привела не теория, а внимательное наблюдение случайного факта. В конце прошлого века американская учительница (Карри Эверсон), стирая загрязненные маслом мешки, в которых хранился раньше медный колчедан, обратила внимание на то, что крупинки колчедана всплывают с мыльной пеной. Это и послужило толчком к развитию способа флотации.

Возникают следующие вопросы. Как образуются газовые пузырьки во флотационной ванне с жидкостью и частицами твердой породы? При каком соотношении объемов газовых пузырьков и твердых частиц образуемые ими флотационные агрегаты будут всплывать?

Введение газовых пузырьков в объем флотационной волны осуществляется многими различными приемами. Иногда просто продуют воздух через сетки с малыми отверстиями, иногда в объеме ванны проводят химическую реакцию, при которой возникает большое количество газа, например углекислого. Существует так называемая электрофлотация, при которой в ванне образуются газообразные водород и кислород при пропускании тока через воду. Все эти приемы дают возможность регулировать интенсивность процесса формирования газовых пузырьков.

Теперь о флотационном агрегате. Он будет всплывать при условии, если его средняя плотность будет меньше плотности жидкости , т. е. . Из записанного неравенства легко получить условие всплывания флотационного агрегата, в состав которого входит твердая частица, имеющая массу , объем (плотность ), и газовые пузырьки, суммарный объем которых . Очевидно,

,

и, следовательно, условие всплывания можно записать в виде

.

Записанное условие всплывания флотационного агрегата выполняется тем лучше, тем меньше объем частиц твердой фазы.

Для проведения модельного опыта требуется изготовить полые стеклянные шарики, которые в воде не падали стремительно, а медленно тонули, так как их плотность была бы немногим больше плотности воды. Шарики были крупными ( мм). А далее все предельно просто. Брали два шарика, один из них тщательно протирали жирными пальцами, а поверхность другого обезжиривали спиртом. После такой обработки на первом должны оседать газовые пузырьки, а на втором – нет.

Первый моделирует вещество гидрофобное, не любящее воду, не смачиваемое водой, а второй – гидрофильное, любящее воду, смачиваемое ею. Шарики клали на дно стакана и заполняли стакан обычной газированной минеральной водой, из которой выделялись газовые пузырьки. На шарике с жирной поверхностью начинали оседать пузырьки, образовался флотационный агрегат и вскоре шарик всплывал.

В описанной постановке опыта, когда всплывает один шарик, поверхность которого заселена пузырьками, наблюдается любопытное сопутствующее явление. В момент, когда шарик касается поверхности, некоторые пузырьки из числа поднимавших шарик лопаются и он начинает тонуть. А затем, обогатившись очередной порцией газовых пузырьков, выделяющихся из воды, он снова всплывает, и цикл повторяется. Легко понять, что в реальном флотационном процессе, в котором участвует огромное количество всплывающих частиц, у поверхности жидкости будет возникать слой, обогащенный частицами определенного сорта, каждый из которых тонуть не будет. Это так называемый слой флотационной, минерализованной пены. Искусственно или самотеком эта пена удаляется вместе с содержащимися в ней частицами либо полезного минерала, либо пустой породы. Технологам приемлемы оба варианта, только бы произошло отделение частиц минерала, обогащенного полезным ископаемым. Это и было целью процесса.

3. О «мягких» и «твердых» пузырьках в жидкости

«Мягкие» — значит легко деформируемые внешней силой, «твердые» — значит не поддающиеся ее воздействию. Будем придерживаться этих, не очень строгих определений и попытаемся применить их к газовым пузырям в жидкости.

Решим вначале задачу о связи между числом атомов газа, заключенных в пузыре, и его радиусом R, полагая при этом, что жидкость, в объеме которой расположен пузырь» находится под постоянным давлением р0. В поисках интересующей нас связи мы будем считать, что пузырь «равновесный», или лучше сказать «уравновешенный», а это означает, что его стенка не перемещается ни от центра пузыря, ни к его центру. В этом случае давление заключенного в нем газа, , стремящегося раздуть пузырь, компенсируется давлением, приложенным к жидкости извне, Р0, и лапласовским давлением, которое обусловлено искривленностью поверхности пузыря . Эти два давления вместе стремятся сжать пузырь.

Давление газа , заключенного в пузыре, можно определить из закона Менделеева — Клайперона, известного из школьного курса физики

,

где — число молекул газа в пузыре. Так как , то

.

Равенство растягивающего и сжимающего давлений, осуществляющееся в условиях равновесия, запишем следующей главной формулой:

, или .

Записанная формула и выражает интересующую нас связь между NT и R.

Та внешняя сила, которой можно «щупать» пузырь для того, чтобы выяснить «мягкий» он или «твердый», определяется давлением Р0. Его можем изменять по собственному желанию. Если , то, изменяя (разумеется, не нарушая неравенства), мы никак не повлияем на размер пузыря, который сильно сжат собственным, лапласовским давлением, значительно большим, чем внешнее. То есть, если радиус пузыря настолько мал, что — внешнее давление пренебрежимо мало по сравнению с лапласовским и поэтому до тех пор пока это неравенство сохраняется, пузырь сохранит свой радиус. А это и значит, что он твердый! А вот в случае, когда , лапласовское давление значительно меньше внешнего и поэтому любое давление будет приводить к изменению радиуса пузыря. Больше давление — меньше радиус, меньше давление — больше радиус. Это — «мягкий» пузырь, он чувствует внешнее давление. Увеличивая внешнее давление, его можно сжать.

Для того чтобы наши рассуждения обрели количественную меру, оценим радиус пузыря , который сжимается лапласовским давлением, равным внешнему . Такой пузырь является как бы пограничным между «мягкими» и «твердыми» пузырями. Если внешнее давление равно атмосферному, то

м.

Итак, «твердые» пузыри в воде — это те, радиус которых значительно меньше микрометра, а «мягкие» — это те, радиус которых значительно больше микрометра.

«Мягкие» и «твердые» пузыри отличаются не только размерами. Оказывается, что во многих реальных ситуациях они обнаруживают различные свойства и различное поведение.

Для «мягкого» пузырька, когда лапласовским давлением можно пренебречь, из главной формулы следует . Это означает, что при объединении двух «мягких» пузырей будут суммироваться их объемы, так как суммируется число газовых молекул. Из этого обстоятельства проистекают два важных следствия.

Во-первых, оно означает, что объем образовавшегося пузыря равен сумме объемов объединившихся.

Во-вторых, оказывается, что два объединившихся пузыря имеют поверхность меньшую, чем та, которую они имели до объединения. Действительно, условие суммирования объемов двух пузырей, радиусы которых и , означает, что

.

Это равенство можно переписать в иной форме:

.

Характеристики

Тип файла
Документ
Размер
42,4 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6458
Авторов
на СтудИзбе
304
Средний доход
с одного платного файла
Обучение Подробнее