151646 (733088), страница 2
Текст из файла (страница 2)
tg k+1 = (-fk/f'k) tg k + hkФ/nk+1. (21)
У формулі (21) відношення -fk/f можна замінити відношенням показників переломлення, тоді
tg k+1 =
tg + hkФk/nk+1 (22)
Якщо оптична система знаходиться в повітрі, то з (22) випливає, що
tg k+1 = tg k + hk Фk. (23)
Висоти h падіння променів на компоненти залежать від кутів, а також від відстаней між цими компонентами:
hk+1 = hk – dk tg k+1. (24)
Рівняння (24) називають формулою висот. Послідовно застосовуючи формули кутів і висот, можна розрахувати хід променів крізь ідеальну оптичну систему будь-якої складності.
4. Багатокомпонентні оптичні системи. Еквівалентна фокусна відстань
У практиці розрахунку оптичних систем велику роль відіграють двокомпонентні системи (рис. 9). Розглянемо дію такої системи за умови, що фокусні відстані компонентів і їхнє взаємне розташування відомі. Визначити положення фокальних і головних площин системи, що по своїй дії еквівалентна будь-якому числу заданих компонентів, можна шляхом розрахунку променів, рівнобіжних оптичний осі, у прямому і зворотному ході.
Послідовно застосовуючи формули кутів (21) і висот (24) для двокомпонентної системи, одержимо
tg 1 = 0; tg 2 = h1Ф1/n2;
h2 = h1 [1 -(Ф1/n2 )d;
tg = h1
.
Еквівалентна фокусна відстань системи
f = h1/tg 3.
Тоді
Рисунок 8- Система з двох компонентів
n3/f = Ф1 + Ф2 - (Ф1Ф2/n2)d.
Відношення n3/f є оптичною силою Ф усієї системи, тому
Ф = Ф1 + Ф2 - (Ф1Ф2/n2)d. (25)
Відстань від другого компонента до еквівалентного заднього фокуса системи а'F = h3/tg3, або
АF' = f1-(Ф1/n2 )d, (26)
а відстань від цього компонента до задньої головної площини системи
аH = а'F - f. (27)
З розрахунку ходу променя в зворотному ході, тобто з права на ліво, відповідно до формул (21) і (24) одержимо, що
-n/f = Ф = Ф1 + Ф2 – (Ф1Ф2/n2)d;
aF = f(1 - (Ф2/n2)d); (28)
aH = aF – f.
Якщо обидва компоненти оптичної системи знаходяться в однорідному середовищі, наприклад у повітрі, то
Ф = -1/f = 1/f = Ф1 + Ф2 – Ф1Ф2d;
aF = f(1- Ф2d);
aH = aF - f;(29)
аF = f' (1 – Ф1d);
aH = aF - f.
Для трикомпонентної системи, усі компоненти якої знаходяться в повітрі, еквівалентну оптичну силу Ф і відрізок аF- визначають за такими формулами:
Ф = Ф1 + Ф2 + Фз - (Ф2 + Фз) Ф1d1 - (Ф1 + Ф2 - Ф1Ф2d1) Ф3d2;
a'F = (1/Ф) [1 – Ф1 (d1 + d2) – Ф2d2 (1 – Ф1d1)].
Якщо в розглянутій системі компонента стикаються (d1 = d2 = 0), то оптична сила
Ф = Ф1 + Ф2 + Фз,
а відрізок аF дорівнює еквівалентній фокусній відстані системи f'.
Знайти параметри еквівалентної системи можна графічно шляхом побудови ходу променя, рівнобіжного оптичній осі, у прямому і зворотному напрямках.
5. Параксіальна область оптичної системи. Параксіальні і нульові промені
Реальні оптичні системи, що складаються зі сферичних і плоских заломлюючих і поверхонь, що відбивають, у загальному випадку не дають стигматичних зображень, тобто не задовольняють положенням ідеальної оптичної системи, Замість точкових зображень виходять кола розсіювання, Гомоцентричність пучка променів зберігається тільки за умови, що кути і , утворені реальними променями з оптичною віссю і з нормаллю до поверхні, нескінченно малі. При нескінченно малих кутах , , а отже, і ', ' справедливі такі вирази:
sin /sin ' s/s' = s'/s const; (30)
для сферичної заломлюючої поверхні
n'/s' - n/s = (n' - n)/r: (31)
для плоскої заломлюючої поверхні
n'/s' - n/s = 0;(32)
для сферичної поверхні, що відбиває
l/s' + 1/s = 2/r. (33)
У виразах (30)-(33) відрізки s і s' визначають відповідно положення осьової предметної точки і її зображення щодо поверхні. Як видно з (30)-(33), відрізок s' залишається постійним для заданого відрізка s, тобто всі промені, що виходять із предметної точки під будь-якими, але малими кутами, після переломлення перетинаються в одній точці - точці зображення. Промені, що утворять малі кути і ' з оптичною віссю і малі кути й ' з нормаллю до заломлюючої поверхні, називають параксіальними променями, а область біля осі, усередині якої поширюються ці промені, - параксіальною областю. Кути і ' для параксіальної області позначають і '. Співвідношення (31)-(38) називають рівняннями параксіальних променів і використовують для розрахунку ходу променів.
Для зручності виконання розрахунків вводиться поняття нульових променів. Нульовим променем називають фіктивний промінь, що переломлюється (віддзеркалюваний) так само, як і параксіальний, на поверхнях, але зустрічається з ними на кінцевих відстанях від оптичної осі і відтинає на оптичній осі ті ж відрізки, що і параксіальний промінь.
Шляхом розрахунку ходу нульового променя через оптичну систему визначають фокусні відстані і фокальні відрізки, а також положення зображення і лінійне збільшення системи для випадку, коли предмет знаходиться на кінцевій відстані.
Формули для розрахунку ходу нульового променя:
; (34)
1hk+1= hk – dk tg k+.1
З виразу (34) одержимо формулу радіуса:
яку використовують для обчислення радіусів поверхонь при заданому ході променя. Для спрощення написання у формулах (34), (35) tg рекомендується заміняти .
6. Положення головних площин. Фокусні відстані заломлюючої поверхні в параксіальній області
У параксіальній області для реальних центрованих оптичних систем справедливі усі формули і положення ідеальної оптичної системи. Представимо малий предмет як би накладеним на поверхню в її вершини. Очевидно, що зображення цього предмета по положенню і розміру збігається із самим предметом. Отже, у вершині поверхні О (рис. 10) знаходиться сполучена пара сполучених точок, лінійне збільшення в який дорівнює одиниці, тобто, тут знаходяться співпадаючі головні точки заломлюючої поверхні. Головні площини збігаються і лежать у площині, дотичної до сфери в точці 0. Якщо предметну точку А переміщати уздовж оптичної осі так, щоб вона вилучилася в нескінченність, то точка А' збігається з заднім фокусом F' заломлюючої поверхні, тобто
s = -; s' = f'. (36)
Підставивши (36) у (31) і розв’язавши отриманий вираз відносно f', одержимо формулу для визначення задньої фокусної відстані заломлюючої поверхні:
f' = n'r/(n' - n). (37)
Рисунок 9- Схема для знаходження фокусних відстаней сферичної поверхні радіусом r
При переміщенні точки А' уздовж осі в нескінченність сполучена точка А збігається з переднім фокусом F поверхні, тобто
s = f;s' = . (38)
З огляду на вираз (38), з формули (31) знайдемо вираз для передньої фокусної відстані сферичної поверхні:
f = nr/(n'- п). (39)
Розділивши (37) на (39), одержимо
f'/f = n'/n.(40)
Цей важливий вираз записано тут для однієї заломлюючої поверхні, але воно справедливо і для будь-якої складної оптичної системи.















