151627 (733082), страница 3
Текст из файла (страница 3)
Результати вимірів НКГ підтверджують вивід про те, що установка підпадає під вплив великої кількості НКГ, а також дозволяють визначити місця їх найбільшого накопичення. Виміри показали, що при будь-якій температурі навколишнього повітря і за відсутності НКГ аміак поступає з конденсаторів в лінійний ресивер з температурою, відповідною до тиску в конденсаторі, тобто переохолодження рідкого аміаку не відбувається. За наявності НКГ температура рідкого аміаку на виході з конденсаторів виявляється нижчою за температуру рідкого аміаку в разі конденсації чистої пари за інших рівних умов, а при високих концентраціях НКГ вона лише на 3–5°С перевищує температуру навколишнього середовища незалежно від її рівня.
Отримані дані дозволили встановити, що значення об'ємної частки НКГ в лінійному ресивері досить коректно визначаються, використовуючи наступну залежність:
, (13)
де Ра – парціальний тиск насиченої пари холодоагенту, відповідний температурі аміаку, що поступає в лінійний ресивер, Мпа; Р – загальний тиск парогазової суміші в лінійному ресивері, Мпа; Ратм – атмосферний тиск, Мпа.
На базі АСУТП був створений програмний регулювальник, який за значеннями тиску в ресивері і температури рідкого аміаку, що поступає в ресивер, використовуючи залежність (13), визначає значення об'ємної частки НКГ в лінійному ресивері. Ця величина була призначена як регульований параметр продувальному клапану, через який здійснюється видалення НКГ.
Метою другої частки експериментального дослідження було встановлення загальних закономірностей впливу НКГ на роботу системи конденсації. Для визначення характеристик парорідинної суміші по довжині труб повітряного конденсатора за наявності НКГ в трубну дошку дослідного конденсатора були встановлені два додаткові термометри опору, які вимірювали температуру парорідинної суміші усередині труби. З їх допомогою вимірювалися температури парорідинної суміші на різних місцях апарату (t-01 – після першого проходу 12 м, t-03 – після другого проходу 24 м). Вимірювалися також тиск нагнітання, тиск в лінійному ресивері і інші технологічні параметри, що характеризують режим роботи установки. Дані вимірів фіксувалися за допомогою АСУТП з частотою 4 секунди.
На рис. 4 наведені значення об'ємної частки НКГ оV, значення відносної насиченості парогазової суміші цо у лінійному ресивері, температур в конденсаторі t-01, t-03, температури аміаку на вході в ресивер t-04 і температури навколишнього повітря tос впродовж 12 годин. Протягом першої години відбувається конденсація чистої пари аміаку. При цьому температури на різних ділянках конденсатора – t-01, t-03 не дуже відрізняються. Далі відбувається надходження НКГ в систему конденсації. Об'ємна частка НКГ в лінійному ресивері зростає до 30%, а значення температур t-03 і t-04 зменшуються на 4-5°С, що приводить до зменшення температурної різниці між аміаком, що конденсується, і зовнішнім повітрям.
Рис. 4 Параметри роботи конденсатора
При наступному надходженні НКГ їх об'ємна частка в лінійному ресивері збільшується до 42%, а температури t-03, t-04 знижуються до температури навколишнього повітря 19-21°С. Це свідчить про те, що на деякій відстані по довжині горизонтальних труб конденсаторів температурна різниця зменшується настільки, що конденсація аміаку повністю припиняється. Значна частка активної поверхні конденсаторів (близько 50%) залишається незадіяною.
Момент початку видалення НКГ зображений на рис. 4 вертикальною лінією на відмітці часу 08:30, що позначає відкриття продувального клапана. У міру видалення НКГ з системи температурна різниця стабілізується.
Перевищення температури рідкого аміаку, що надходить до лінійного ресиверу t-04, значень температур t-01, t-03 пояснюється тим, що рідкий аміак при виході з конденсатора нагрівається потоком перегрітої пари, що входить в конденсатор. Це удалося виявити за допомогою фотознімка передньої панелі конденсатора в інфрачервоному випромінюванні, використовуючи тепловизор «Therma CAM P60» (FLIR Systems, Швеція, діапазони температур для вимірів: від -40°С до + 120°С або від 0°С до + 500°С, точність вимірів ±2°С або ±2% від показань). На ньому видно, що структура потоків в конденсаторі реалізована так, що камера входу перегрітої пари аміаку в конденсатор і виходу конденсату, температури яких дуже сильно відрізняються (на 40-60 °С) є суміжними, та між ними відбувається теплообмін.
Загальний вплив температури навколишнього середовища, загального тиску і об'ємної частки НКГ на ефективність роботи конденсаторів можна оцінити, використовуючи величину відносної насиченості парогазової суміші. Вона характеризує ступінь насиченості парогазової суміші неконденсованими газами при відомій температурі і тиску суміші і дорівнює відношенню фактичної об'ємної частки НКГ в парогазової суміші оV до максимально можливої об'ємної частки НКГ оVmax, яка може утворитися в суміші при її максимальному охолоджуванні до температури середи, що охолоджує:
або
, (14)
де Рk, Рk0 – парціальний тиск насиченої пари аміаку, при фактичній температурі парогазової суміші та при температурі навколишнього повітря. Величина цо набуває значень від 0 до 1.
Дані про роботу установки протягом 24 годин в умовах значного надходження НКГ представлені на рис. 5.
Рис. 5 Характеристики холодильної системи під впливом НКГ на протязі доби
В даному випадку видалення НКГ з системи не проводилося протягом тривалого часу. На рис. 5а представлений графік значень відносній насиченості парогазової суміші, її значення дорівнюють одиниці при об'ємній частці НКГ 57%. В той же час в роботу включається максимальна кількість вентиляторів, досягається пікове навантаження на конденсатори при незмінних параметрах холодильного циклу, здійснюваного установкою. Подальше надходження НКГ спричиняє підвищення тиску нагнітання компресора на 29% – з 1.7 до 2 Мпа (рис. 5г) і зменшення холодопродуктивності установки на 26%, яке відбивається в зменшенні кількості аміаку, що приймається в сховища (рис. 5в).
Максимальне значення концентрації НКГ складає 64% за об'ємом. Змінювання температури навколишнього повітря не перевищує 5°С (рис. 5б) і значного впливу на ефективність роботи конденсаторів вона не надає. На відмітці часу 17:00 відбувається видалення НКГ і робочий режим холодильної установки стабілізується.
Достовірність результатів і експериментальних досліджень перевірялася порівнянням з теоретичними даними, отриманими в результаті розрахунку параметрів конденсації пари аміаку у присутності НКГ за допомогою розробленої математичної моделі за початковими даними і умовами експериментальної частки дослідження.
Отримані за допомогою розрахунку по математичній моделі значення теплового навантаження на конденсаторну систему Qk, менше експериментальних значень: на 8-10% при роботі системи без НКГ, на 10-12% при роботі системи за наявності 56% НКГ в ресивері.
В ході експериментів були виявлені періодичні змінення тиску у конденсаторах, оборотів газотурбінного двигуна, що є приводом компресора, температури рідкого аміаку на вході в лінейний ресивер та деякі інші параметри.
Було встановлено, що коливання виникають при пониженні температури навколишнього середовища, тобто при збільшенні температурної різниці між парою аміаку, що конденсується, і зовнішнім повітрям, та за наявності НКГ. Період коливань може складати від 10 до 30 хвилин.
Однією з умов виникнення коливань в системі окрім високої різниці температур є наявність НКГ (10-20% за об'ємом). Подібні результати були отримані також і іншими дослідниками.
У четвертому розділі приведені розроблені автором номограми, що дозволяють визначити вміст холодильних агентів в суміші з повітрям залежно від тиску суміші і її температури, а також вибрати спосіб видалення НКГ, що забезпечує найменші енерговитрати і втрати холодоагенту.
Розглянуті конструкції найбільш поширених повітровідділювачів що застосовуються в холодильних установках: кожухозмійовикового типу, повітровідділювач системи Кобулашвілі, автоматизовані повітровідділювачі АВ-2, АВ-4, повітровідділювачі виробництва фірм Hansen Technologies, Gea-Grasso, York Refrigeration. Вказані недоліки системи відділення НКГ, вживаної на холодильній установці комплексу перевантаження аміаку Одеського припортового заводу. Основні з них: паралельний струм охолоджуваної і охолоджуючої середи, висока металоємність апарату в порівнянні з площею поверхні теплообміну, а також деякі недоліки конструкції віддільника НКГ. Вміст аміаку в суміші, що видаляється через даний апарат, складає 15-20%.
З урахуванням результатів аналізу систем видалення НКГ і переваг пластинчастих теплообмінних апаратів розроблений віддільник неконденсованих газів з використанням пластинчастої поверхні теплообміну як основної. Принципова новизна розробленого високоефективного повітровідділювача, що забезпечує якнайповніше видалення неконденсованих газів з систем аміачних холодильних з мінімальними втратами аміаку, захищена патентом України на винахід. Заміна віддільника НКГ, використовуваного у складі холодильної установки комплексу перевантаження аміаку, на пропонованого віддільника неконденсованих газів пластинчастого типу дозволяє добитися меншої концентрації аміаку (не більше 7% за об'ємом) в парогазової суміші, що видаляється, з системи холодильної установки. Скорочення річних втрат аміаку при видаленні НКГ унаслідок заміни існуючих віддільників новими апаратами рівної площі поверхні теплообміну складає по попередніх розрахунках близько 63 тонн.
ВИСНОВКИ
-
Вперше в умовах експлуатації крупних промислових аміачних холодильних установок проведено дослідження процесів конденсації аміаку в горизонтальнотрубних повітряних конденсаторах за наявності неконденсованих газів, результати якого дозволили вирішити важливе для холодильної техніки науково-прикладне завдання вдосконалення робочих процесів конденсаторних комплексів, що забезпечують інтенсивний теплообмін, надійне відведення неконденсованих газів та енергетично ефективну і екологічно безпечну експлуатацію промислових аміачних холодильних установок.
-
Виявлено, що наявність НКГ викликає відхилення від ізотермічності процесу конденсації пари усередині горизонтальних труб, приводить до зменшення різниці температур конденсації і повітря, що охолоджує, і щільності теплового потоку по довжині труб.
-
Встановлено, що ефективна довжина труб, впродовж якої конденсація протікає з достатньою інтенсивністю, визначається, перш за все, швидкістю руху парогазової суміші, а не концентрацією НКГ.
-
Показано, що загальний вплив температури навколишнього середовища, спільного тиску парогазової суміші і об'ємної частки НКГ на ефективність роботи конденсаторів точніше оцінюється з використанням запропонованого автором параметра відносної насиченості парогазової суміші.
-
Розроблена математична модель процесу конденсації аміаку усередині горизонтальних труб за наявності НКГ, яка враховує вплив зростаючого по довжині труб термічного опору донного конденсату і зменшення температури конденсації аміаку, викликаного збільшенням концентрації НКГ. Модель дозволяє прогнозувати критичні значення довжини труб повітряних конденсаторів, перевищення яких призводить до того, що частка поверхні теплообміну буде задіяною з меншими зниженнями щільності теплового потоку.
-
Показано, що з метою підвищення ефективності роботи повітряних горизонтальнотрубних конденсаторів з трубами внутрішнім діаметром 21-32 мм за наявності НКГ і щільності теплового потоку 10-15 кВт/м2 доцільно використовувати апарати з довжиною труб (довжиною всіх ходів аміаку в конденсаторі) не більше 7-10 м.
-
Встановлено, що при низьких значеннях температури навколишнього середовища і тиску конденсації (у зимовий час) наявність НКГ приводить до значнішої питомої перевитрати енергії на вироблення холоду. У цих умовах щоб уникнути підвищених втрат холодоагенту перед видаленням НКГ потрібна додаткова підготовка парогазової суміші.
-
Виявлено, що НКГ з концентрацією до 20% за об'ємом можуть не вчиняти істотного впливу на теплопередачу в повітряних конденсаторах аміаку при високій різниці температур конденсації і повітря tk–tос= (30ч40 °С), що охолоджує, оскільки вони накопичуються в лінійному ресивері над рівнем рідини (оскільки азот і повітря важчі за аміак) і не поступають назад в конденсатор в зону активної поверхні теплообміну.
-
Фотографування інфрачервоного випромінювання теплоенергетичних об'єктів дало можливість виявити характер температурного поля теплообмінної поверхні конденсаторів, визначити зони зняття перегріву пари та його конденсації, а також виявити конструктивні недоліки конденсатора, що полягають в наявності шкідливого теплообміну між вхідною перегрітою парою і конденсатом, що виходить.
-
Моніторинг параметрів роботи холодильної установки дозволяє виявити, що при високій різниці температур конденсації і навколишнього повітря (більше 25°С), наявність НКГ в кількості 10-20% за об'ємом в системі відведення теплоти конденсації викликає виникнення коливань параметрів системи конденсації і всієї холодильної установки, що ускладнює регулювання роботи установки і приводить до підвищеного зносу устаткування.
-
Був розроблений віддільник неконденсованих газів з пластинчастою поверхнею теплообміну, що забезпечує їх видалення з втратами аміаку не більше 7% від об’єму та не потребує додаткового енергоспоживання.
-
Впровадження системи контролю і видалення НКГ на холодильній установці комплексу перевантаження аміаку Одеського припортового заводу дозволило скоротити втрати аміаку і тривалість роботи установки в режимі підвищеного енергоспоживання.
Основні результати дисертації опубліковані в наукових спеціалізованих виданнях:
-
Мнацаканов Г.К., Андрусенко А.Н. Особенности конденсации холодильных агентов из парогазовой смеси // Холодильная техника и технология. – 2000. – Вып.68, – с. 28-31.
-
Мнацаканов Г.К., Андрусенко А.Н. О влиянии температуры конденсации на энергозатраты холодильных машин // Холодильная техника и технология. – 2001. – № 1. – с. 5-8.
-
Андрусенко А.Н., Мнацаканов Г.К. Исследование и моделирование процессов конденсации аммиака в присутствии неконденсируемых примесей внутри горизонтальных труб // Холодильная техника и технология. – 2006. – № 6. – с. 19-25.
-
Пат. 79630 Україна, МПК F25B 43/04. Пристрій для видалення газів, що не конденсуються: Пат. 79630 Україна, МПК F25B 43/04 Андрусенко А.М. (Україна), Мнацаканов Г.К. (Україна). – № а200502539; Заявл. 21.03.05; Опубл. 10.07.07, Бюл. № 10. – 4 с.
Основні публікації, в яких додатково викладений зміст дисертації:
-
Андрусенко А.Н., Мнацаканов Г.К. Влияние неконденсирующихся примесей на теплообмен при конденсации холодильных агентов из парогазовой смеси // Сучасні проблеми холодильної техніки і технології: Збірник наукових праць Міжнародної науково-технічної конференції (Додаток до журналу «Холодильна техніка і технологія»). Одеса, 3-5 жовт. 2001 р. с. 19-21.
-
Андрусенко А.Н., Мнацаканов Г.К. Источники неконденсируемых примесей и методы их контроля на предприятиях производства и перегрузки аммиака: Сборник научных трудов II Международной научно-технической конференции «Современные проблемы холодильной техники и технологии», Одесса, 17-19 сент. 2002 г. с. 14-15.
-
Андрусенко А.Н., Мнацаканов Г.К. Особенности теплообмена при конденсации хладагентов в присутствии неконденсатов: Збірник наукових праць III Міжнародної науково-технічної конференції «Сучасні проблеми холодильної техніки і технології» (Додаток до журналу «Холодильна техніка і технологія»), Одеса, 17-19 вер. 2003 р. с. 13-15.
-
Андрусенко А.Н., Мнацаканов Г.К. Особенности работы воздушных горизонтальных конденсаторов Одесского припортового завода: Сборник научных трудов IV Международной научно-технической конференции «Современные проблемы холодильной техники и технологии», Одесса, 21-23 сент. 2005 г. с. 11-11.
-
Андрусенко А.М., Мнацаканов Г.К. Зниження енерговитрат великої аміачної установки // Холод М+Т. – 2006. – № 5. – с. 46-49.
-
Andrusenko A., Mnatsakanov G. Experimental investigation of noncondensable gases influence on the condensers operation of high-capacity refrigerating system at the ammonia terminal // Ammonia Refrigeration Technology for Today and Tomorrow: International Institute of Refrigeration International Conference; Ohrid, Republic of Macedonia, April 19-21, 2007; Commissions B2 with B1, D1. [Электронный ресурс]: Refrigeration Science and Technology Proceedings, No. 2007-2. – 1 электрон. опт. Диск (CD-ROM): цв; 12 см. – Систем. вимоги: Pentium-266; 32 Mb RAM; CD-ROM Windows 98/2000/NT/XP. –Заголовок з титул. экрану.
-
Андрусенко А.Н., Мнацаканов Г.К. Оценка влияния неконденсирующихся газов на работу конденсаторов с помощью относительной насыщенности парогазовой смеси: Сборник научных трудов VI Международной научно-технической конференции «Современные проблемы холодильной техники и технологии». Одесса, 19–21 сент. – 2007 г. с. 21.
Особистий вклад автора в роботи, опубліковані в співавторстві: [3, 9] – отримання і аналіз експериментальних даних по впливу НКГ на робочі характеристики крупних повітряних конденсаторів; [7, 8] – виявлення зменшення щільності теплового потоку при конденсації аміаку в горизонтальних трубах унаслідок зменшення температури конденсації аміаку; [10, 11] – введення параметра відносної насиченості парогазової суміші, що враховує вплив НКГ на режимні параметри конденсаторних комплексів; [3, 10] – розробка математичної моделі процесу конденсації аміаку із парогазової суміші в горизонтальних трубах, що враховує градієнт концентрацій компонентів парогазової суміші по довжині труб і зменшення температури конденсації аміаку; [2, 6, 8, 9] – принципи раціональної організації робочих процесів аміачних конденсаторних комплексів, [3] – методичні рекомендації за визначенням критичної довжини труб при проектуванні конденсаторних комплексів, при якій вплив НКГ на конденсацію аміаку є мінімальним, [1, 4, 5] – аналіз способів відділення і конструктивне вирішення пристрою видалення НКГ із систем відведення теплоти конденсації.