151099 (732912), страница 2
Текст из файла (страница 2)
Приведена самая элементарная схема атома дейтерия, изотопа водорода, где присутствуют все признаки системы: динамика орбитального движения адронов и лептона, ядерный и лептонный орбитальные фокусы, положение орбитального фокуса электрона относительно адронов.
Нейтрон является орбитальной частицей (лептоном) материи Мертвого пространства, добросовестно обращается вокруг ядра, имеет в том пространстве отрицательный заряд и монополярный спин.
Протон - антипод нейтрона, подобно тому, как позитрон (положительный электрон) относится к электрону. Имеет практически сходную с нейтроном массу (масса покоя mp = 1,6726485×10-27 кг., т.е. 99,862% массы нейтрона), положительный заряд и монополярный спин Мертвого пространства, имеющий противоположное направление спину нейтрона – это следствие вытекает из полярности заряда частицы относительно собственного пространства. При взаимодействии в Мертвом пространстве взаимно аннигилируют.
Для того, чтобы объединить их в единую систему, сделав материей нашего пространства, нужно сжать материю пространства по торсионному фактору, чтобы она приобрела биполярный спин элементарных частиц. Однако при торсионном сжатии необходимо учитывать фактор относительности пространств, или относительности спиновых векторов материи. Что это такое?
В этом убедиться легко и просто: изготовьте из кальки или жесткой пленки два полупрозрачных диска, на которые нанесите стрелки в одном направлении. Пометьте один диск «наше пространство», а другой - «мертвое». Наколите по центру их на ось так, чтобы ось была со стороны, где нет стрелки. Накалывая диски вы обратите внимание, что на обоих стрелки смотрели в одну сторону. Но когда вы наколете диски, и получите подобие катушки на одной оси, то посмотрите со стороны любого диска на противоположный, – стрелки будут смотреть в разные стороны.
Направление векторов во всей Вселенной едино относительно векторов пространств, и не зависит от точки наблюдения на конкретной планете. Например, в Северном полушарии Земли атмосферные циклоны закручиваются по часовой стрелке, а в Южном – против часовой. Однако если смотреть относительно ядра планеты (вектор Желтого пространства), то в Северном и Южном полушариях закрутка идет в одну и ту же сторону. Так же и в биологии – чтобы в иглотерапии безболезненно ставить иглы пациенту, их нужно вращать по часовой стрелке в Северном полушарии, и против часовой в Южном.
Это важнейшая особенность строения многомерной Вселенной: относительность ориентации векторов пространств замыкает энергетику пространства в самом себе, не позволяя энергии свободно перетекать в нижележащее пространство, менее энергоемкое.
Это важнейший фактор стабилизации пространств Вселенной, так сказать, своеобразный «клапан» для ее энтропии. Но его можно и открывать… правда, об этом чуть позже.
Вот именно этот принцип относительности векторов и «играет» с нейтроном и протоном, при их переходе в наше пространство интересные метаморфозы. Нейтрон и протон, получают дополнительное спиновое вращение, в том числе и относительно друг друга, однако качество частиц становится различным:
- протон, имея в Мертвом пространстве исходный обратный спин, относительно нашего пространства становится полноценной элементарной частицей материи пространства. Поскольку его векторы совпадают с нашей материей, он становится исключительно устойчивым барионом с положительным зарядом, и участвует во всех взаимодействиях – сильном, электромагнитном, слабом и гравитационном;
- нейтрон, имея в Мертвом пространстве исходный спин пространства, относительно нашего пространства становится неустойчивой элементарной частицей пространства, и в свободном состоянии не может существовать более 15,3 минут. Он стабилен только в составе ядра, вместе с протоном. Поскольку один из двух его векторов не совпадает с нашей материей, он теряет заряд, очень сильно проявляет себя в ядерном взаимодействии (нестабильный и активный «двойник» протона), а в остальных – слабо.
Однако, за счет совпадения одного своего вектора с пространством Мертвой материи, он сохраняет гравитационное взаимодействие.
«Нейтрон – единственная из имеющих массу покоя элементарных частиц, для которой непосредственно наблюдалось гравитационное взаимодействие – искривление в поле земного тяготения траектории хорошо коллимированного пучка холодных нейтронов. Измеренное гравитационное ускорение нейтрона в пределах точности совпадает с гравитационным ускорением макроскопических тел».
За гравитацию в нашем пространстве отвечает нейтрон, гравитоны. Сам термин «гравитон» уместно употреблять не для обозначения конкретной частицы, а только ее функции – очень удобно при анализе общего принципа и закономерностей гравитации в иных пространствах.
Таким образом, после приращения бинарного вектора и перехода в наше пространство протон и нейтрон приобрели различные свойства, перестали быть античастицами относительно друг друга, следовательно, устранена опасность их взаимной аннигиляции. Сжатие орбитальных параметров этой пары до подобия «двойной звезды» придает частицам новое качество – в сильном взаимодействии они образуют исключительно устойчивый адронный диполь как базовый элемент ядерной структуры материи нашего пространства.
Подобное происходит и с парой электрон-позитрон, когда они переходят в более высшее Желтое пространство в качестве адронов. Точно так же электрон там теряет заряд, и становится подобием нейтрона, оставаясь гравитоном для Желтой материи, а позитрон приобретает положительный заряд и все качества, присущие протону в нашем пространстве.
Это ЕДИНЫЙ ЗАКОН МАТЕРИИ ВСЕЛЕННОЙ, и он правомерен во всех ее пространствах.
Протон и нейтрон образуют не некое слипшееся бесформенное образование, а активную сферу сильного (ядерного) орбитального взаимодействия частиц, именуемую ядром атома.
Очевидно, что для этой сферы характерны все признаки орбитальной динамичной системы, в частности, энергия движения (частота вращения и обращения) и ее фокус, являющийся в данном случае ядерным, и применимым как единая точка приложения результирующих сил в сильном взаимодействии.
Очевидно и то, что в условиях динамического состояния орбитальной системы адронов речь может идти не о фиксированной частоте волнового излучения (поглощения) ядра, а о полосе частот (энергии, скорости движения), в пределах которых система равновесна. Естественно, что на спектре элемента это будет не линия излучения (поглощения), как это трактуется квантовой теорией Н. Бора, а полоса спектра излучения достаточной ширины, в пределах частотных параметров устойчивости системы, что имеет место в действительности. Наверное, было бы более корректным и правильным в рассмотрении особенностей взаимодействия атомов и молекул, а также составляющих их элементарных частиц применять в терминологии не «квантовое», а «волновое взаимодействие».
Очевидно также, что для более сложных атомов элементов, где число пар «протон-нейтрон» больше 1, орбитальная сфера ядра приобретает значительно более сложную структуру и большие размеры. В сложных орбитальных системах количество орбитальных фокусов в одном диапазоне частот может быть различным, более единицы, кратным 1,…2,…3, и более, как и пространственное расположение фокусов. При увеличении уровня энергии (скорости движения) пространственное расположение орбитальных ядерных фокусов может меняться в пространстве ядерной сферы в пределах равновесного состояния системы для данного уровня энергии.
Известные агрегатные состояния вещества – газ, жидкость, твердое тело и плазма должны характеризоваться различным уровнем энергии ядра атома химического элемента, следовательно, эти состояния напрямую зависят от пространственного расположения орбитальных ядерных фокусов, соответствующих данному уровню энергии.
Например, у водорода три состояния – жидкость, газ и плазма. Для этих состояний должны быть всего 3 уровня атомных частот элемента.
У более сложных элементов, имеющих твердую фазу, количество ядерных частот должно быть больше: – различные формы твердого состояния, расплавленная (жидкая) фаза, газообразная (испаренная) фаза и плазма. В твердой фазе тела на его структуру и свойства непосредственно влияет уровень энергии ядра и соответствующая ему форма пространственного расположения фокусов орбитальной ядерной сферы.
2.3.2 Строение и разновидности атома углерода
Рассмотрим это на наиболее известном примере углерода, С (carboneum), неметаллического химического элемента IVA подгруппы (C, Si, Ge, Sn, Pb) Периодической системы элементов.
Строение атома углерода. Ядро наиболее стабильного изотопа углерода массой 12 (распространенность 98,9%) имеет 6 протонов и 6 нейтронов (12 нуклонов), расположенных тремя квартетами, каждый содержит 2 протона и два нейтрона аналогично ядру гелия. Другой стабильный изотоп углерода – 13C (ок. 1,1%), а в следовых количествах существует в природе нестабильный изотоп 14C с периодом полураспада 5730 лет, обладающий β-излучением. В нормальном углеродном цикле живой материи участвуют все три изотопа в виде СO2.
У углерода три аллотропические модификации – алмаз, графит и фуллерен. В алмазе каждый атом углерода имеет 4 тетраэдрически расположенных соседа, образуя кубическую структуру (рис. 6,а). Такая структура отвечает максимальной ковалентности связи, и все 4 электрона каждого атома углерода образуют высокопрочные связи С–С, т.е. в структуре отсутствуют электроны проводимости. Поэтому алмаз отличается отсутствием проводимости, низкой теплопроводностью, высокой твердостью; он самый твердый из известных веществ (рис. 2). На разрыв связи С–С (длина связи 1,54 Å, отсюда ковалентный радиус 1,54/2 = 0,77 Å) в тетраэдрической структуре требуются большие затраты энергии, поэтому алмаз, наряду с исключительной твердостью, характеризуется высокой температурой плавления (3550°C).
Другой аллотропической формой углерода является графит, сильно отличающийся от алмаза по свойствам. Графит – мягкое черное вещество из легко слоящихся кристалликов, отличающееся хорошей электропроводностью (электрическое сопротивление 0,0014 Ом×см).
Поэтому графит применяется в дуговых лампах и печах, в которых необходимо создавать высокие температуры. Графит высокой чистоты применяют в ядерных реакторах в качестве замедлителя нейтронов. Температура плавления его при повышенном давлении равна 3527°C. При обычном давлении графит сублимируется (переходит из твердого состояния в газ) при 3780°C.
Структура графита (рис. 6,б) представляет собой систему конденсированных гексагональных колец с длиной связи 1,42 Å (значительно короче, чем в алмазе), но при этом каждый атом углерода имеет три (а не четыре, как в алмазе) ковалентные связи с тремя соседями, а четвертая связь (3,4 Å) слишком длинна для ковалентной связи и слабо связывает параллельно уложенные слои графита между собой. Именно четвертый электрон углерода определяет тепло- и электропроводность графита – эта более длинная и менее прочная связь формирует меньшую компактность графита, что отражается в меньшей твердости его в сравнении с алмазом (плотность графита 2,26 г/см3, алмаза – 3,51 г/см3). По той же причине графит скользкий на ощупь и легко отделяет чешуйки вещества, что и используется для изготовления смазки и грифелей карандашей. Свинцовый блеск грифеля объясняется в основном наличием графита.
Волокна углерода имеют высокую прочность и могут использоваться для изготовления искусственного шелка или другой пряжи с высоким содержанием углерода.
При высоких давлении и температуре в присутствии катализатора, например железа, графит может превращаться в алмаз. Этот процесс реализован для промышленного получения искусственных алмазов. Кристаллы алмаза растут на поверхности катализатора. Равновесие графит ↔ алмаз существует при 15 000 атм и 300 K или при 4000 атм и 1500 K. Искусственные алмазы можно получать и из углеводородов.
К аморфным формам углерода, не образующим кристаллов, относят древесный уголь, получаемый нагревом дерева без доступа воздуха, ламповую и газовую сажу, образующуюся при низкотемпературном сжигании углеводородов при недостатке воздуха и конденсируемую на холодной поверхности, костяной уголь – примесь к фосфату кальция в процессе деструкции костной ткани, а также каменный уголь (природное вещество с примесями) и кокс, сухой остаток, получаемый при коксовании топлив методом сухой перегонки каменного угля или нефтяных остатков (битуминозных углей), т.е. нагреванием без доступа воздуха. Кокс применяется для выплавки чугуна, в черной и цветной металлургии. При коксовании образуются также газообразные продукты – коксовый газ (H2, CH4, CO и др.) и химические продукты, являющиеся сырьем для получения бензина, красок, удобрений, лекарственных препаратов, пластмасс и т.д.
Различные виды угля и сажи отличаются развитой поверхностью и поэтому используются как адсорбенты для очистки газа, жидкостей, а также как катализаторы. Для получения различных форм углерода применяют специальные методы химической технологии. Искусственный графит получают прокаливанием антрацита или нефтяного кокса между углеродными электродами при 2260°\up6 (процесс Ачесона) и используют в производстве смазочных материалов и электродов, в частности для электролитического получения металлов.
В 1980-х годах физиками США был обнаружены очень интересные соединения углерода, в которых атомы углерода соединены в 5- или 6-угольники, образующие молекулу С60 по форме полого шара, имеющего совершенную симметрию футбольного мяча. Поскольку такая конструкция лежит в основе «геодезического купола», изобретенного американским архитектором и инженером Бакминстером Фуллером, новый класс соединений был назван «бакминстерфуллеренами» или «фуллеренами» (а также более коротко – «фазиболами» или «бакиболами»). Фуллерены – третья модификация чистого углерода (кроме алмаза и графита), состоящая из 60 или 70 (и даже более) атомов, – была получена действием лазерного излучения на мельчайшие частички углерода. Фуллерены более сложной формы состоят из нескольких сотен атомов углерода. Диаметр молекулы С60 ~ 1нм. В центре такой молекулы достаточно пространства для помещения большого атома урана.
Сейчас их интенсивно изучают в лабораториях разных стран, пытаясь установить условия их образования, структуру, свойства и возможные сферы применения. Наиболее полно изученный представитель семейства фуллеренов – фуллерен-60 (C60) (его называют иногда бакминстер-фуллерен), в котором углеродные атомы образуют многогранник, напоминающий футбольный мяч. Известны также фуллерены C70 и C84. Фуллерен С60 получают испарением графита в атмосфере гелия. При этом образуется мелкодисперсный, похожий на сажу порошок, содержащий 10% углерода; при растворении в бензоле порошок дает раствор красного цвета, из которого и выращивают кристаллы С60. Фуллерены обладают необычными химическими и физическими свойствами. Так, при высоком давлении С60 становится твердым, как алмаз. Его молекулы образуют кристаллическую структуру, как бы состоящую из идеально гладких шаров, свободно вращающихся в гранецентрированной кубической решетке. Благодаря этому свойству C60 можно использовать в качестве твердой смазки. Фуллерены обладают также магнитными и сверхпроводящими свойствами.















