151041 (732890), страница 2
Текст из файла (страница 2)
6.6.3. Перевод лапласиана в шаровые координаты можно осуществить, используя различные схемы. В сферических координатах он выглядит довольно внушительно, но при ближайшем рассмотрении оказывается достаточно простой конструкцией. Несложные, но длительные, преобразования приводят к следующей формуле:
. (6.15)
Упрощая, выделим вначале операторы чисто радиальный и чисто угловой:
.(6.16)
6.6.4. Операторные компоненты лапласиана. Первое слагаемое активно только к радиальной переменной, второе же - к угловым аргументам и оно называется оператором Лежандра. Лапласиан получает вид
. (6.17)
6.6.5 Угловой оператор - оператор Лежандра далее также разделяется на два независимых оператора. Один из них действует на переменную широты , а второй - на переменную долготы , так что получается:
. (6.18)
6.7. Сферическим уравнением Лапласа назовём дифференциальное уравнение в частных производных второго порядка
.(6.19)
В сферических переменных оно приобретает вид
, (6.20)
Решения отыщем по методу Фурье. Для разделения переменных искомое решение представим как произведение радиальной и угловой функций.
Общее правило: Если в дифференциальном уравнении в частных производных можно выделить оператор, включающий несколько переменных, и привести его к аддитивной форме, придавая ему вид суммы слагаемых, определённых лишь для отдельных переменных, то исходное дифференциальное уравнение распадается на систему дифференциальных уравнений. Каждое из них и их решения определены лишь на переменных соответствующего оператора-слагаемого. Частные решения исходного дифференциального уравнения выбираются в мультипликативном виде, как произведения функций – решений отдельных уравнений системы. Этот результат сформулируем в виде краткого правила: «Оператор аддитивен-Решения мультипликативны». Этот подход встречается всюду в теории многоэлектронных систем – атомов и молекул.
6.7.1. Радиальную часть общего решения сферического уравнения Лапласа выбирают в простейшем виде степенной функции от радиальной переменной, Показатель степени l полагают целочисленным неотрицательным числом
. Только в этом случае соблюдается симметрия общего решения по отношению ко взаимным перестановкам декартовых координат, и делается возможно построение регулярных решений (функций класса Q ), (конечных, однозначных и непрерывных), (далее нормированных).
. (6.21)
Угловые сомножители общего решения Y(,) называются сферическими гармониками (шаровыми функциями). Запишем уравнение Лапласа, и рассмотрим процедуру разделения переменных:
. (6.22)
Подставим радиальный оператор и совершим следующие простейшие преобразования:
.
Перенесём одно из слагаемых в сторону от знака равенства и разделим обе части на Y(,):
.
6.7.2. Итоговое дифференциальное уравнение называется уравнением Лежандра.
Оно включает лишь угловую часть лапласиана и имеет вид:
. (6.23)
Уравнение Лежандра, встречается в нескольких фундаментальных задачах: 1) в задаче о квантовых состояниях и энергетических уровнях ротатора - линейной молекулы, свободно вращающейся вокруг центра массы. 2) в уравнении Шрёдингера для атома H и водородоподобных ионов.
6.7.3. Уравнение Лежандра это вполне типичное операторное уравнение на собственные функции и собственные значения. С точностью до постоянного множителя уравнение Лежандра идентично операторному уравнению на собственные значения для оператора квадрата момента импульса. Напомним вид самого оператора момента импульса:
Перенесём постоянный множитель влево, получим
(6.24)
6.7.4. Преобразуя оператор слева от знака равенства к шаровым переменным, получаем не что иное, как оператор Лежандра, т.е.:
. (6.25)
На этом основании решения уравнения Лежандра являются решениями также и операторного уравнения на собственные значения квадрата момента импульса. Отсюда строго получается формула для квантования модуля и проекции момента импульса. Это означает
. (6.26)
6.7.5. Квадрат модуля момента импульса определяется собственными значениями оператора Лежандра. Допустимые значения модуля момента импульса свободно вращающейся вокруг центра масс квантовой системы (жесткого ротатора) следуют из операторного уравнения (6.25):
. (6.27)
Соответственно при пространственном вращении возможные дискретные значения модуля момента импульса и его проекций на ось вращения определяется двумя формулами
(6.28)
6.8. Ротатор. Вращательные состояния ротатора
. Углы прецессии момента импульса. Энергетические уровни ротатора непосредственно связаны с квадратом момента.
.(6.29)
Кратность вырождения уровня называется его статистическим весом и определяется как число
возможных состояний с одним и тем же моментом, т.е. равно числу возможных проекций. Статистические веса уровней ротатора gl равны:
. (6.30)
Эти формулы необходимы для вычисления термодинамических свойств газов.















