150921 (732852), страница 4
Текст из файла (страница 4)
Напряжение холостого хода, генерируемое одним элементом, слегка изменяется при переходе от одного элемента к другому в одной партии и от одной фирмы изготовителя к другой и составляет около 0.6 В. Эта величина не зависит от размеров элемента. По иному обстоит дело с током. Он зависит от интенсивности света и размера элемента, под которым подразумевается площадь его поверхности.
Элемент размером 100
100 мм в 100 раз превосходит элемент размером 10
10 мм и, следовательно, он при той же освещенности выдаст ток в 100 раз больший.
Нагружая элемент, можно построить график зависимости выходной мощности от напряжения, получив нечто подобное изображенному на рис.2
Пиковая мощность соответствует напряжению около 0,47 В. Таким образом, чтобы правильно оценить качество солнечного элемента, а также ради сравнения элементов между собой в одинаковых условиях, необходимо
нагрузить его так, чтобы выходное напряжение равнялось 0,47 В. После того, как солнечные элементы подобраны для работы, необходимо их спаять. Серийные элементы снабжены токосъемными сетками, которые предназначены для припайки к ним проводников.
Батареи можно составлять в любой желаемой комбинации. Простейшей батареей является цепочка из последовательно включенных элементов. Можно также соединить параллельно цепочки, получив так называемое последовательно-параллельное соединение.
Важным моментом работы солнечных элементов является их температурный режим. При нагреве элемента на один градус свыше 25оС он теряет в напряжении 0,002 В, т.е. 0,4 %/градус. На рис.3 приведено семейство кривых ВАХ для температур 25о С и 60о С.
В яркий солнечный день элементы нагреваются до 60-70оС теряя 0,07-0,09 В каждый. Это и является основной причиной снижения КПД солнечных элементов, приводя к падению напряжения, генерируемого элементом.
КПД обычного солнечного элемента в настоящее время колеблется в пределах 10-16 %. Это значит, что элемент размером 100
100 мм при стандартных условиях может генерировать 1-1,6 Вт.
Все фотоэлектрические системы можно разделить на два типа: автономные и соединенные с электрической сетью. Станции второго типа отдают излишки энергии в сеть, которая служит резервом в случае возникновения внутреннего дефицита энергии.
Автономная система в общем случае состоит из набора солнечных модулей, размещенных на опорной конструкции или на крыше, аккумуляторной батареи (АКБ), контроллера разряда - заряда аккумулятора, соединительных кабелей. Солнечные модули являются основным компонентом для построения фотоэлектрических систем . Они могут быть изготовлены с любым выходным напряжением.
После того как солнечные элементы подобраны - их необходимо спаять. Серийные элементы снабжены токосъемными сетками для припайки к ним проводников. Батареи можно составлять в любой комбинации.
Простейшей батареей является цепочка из последовательно соединенных элементов.
Можно соединить эти цепочки параллельно, получив так называемое последовательно-параллельное соединение. Параллельно можно соединять лишь цепочки (линейки) с идентичным напряжением, при этом их токи согласно закону Кирхгофа суммируются.
При наземном использовании они обычно используются для зарядки аккумуляторных батарей (АКБ) с номинальным напряжением 12 В. В этом случае, как правило, 36 солнечных элементов соединяются последовательно и герметизируются посредством ламинации на стекле, текстолите, алюминии. Элементы при этом находятся между двумя слоями герметизирующей пленки, без воздушного зазора. Технология вакуумной ламинации позволяет выполнить это требование. В случае воздушной прослойки между защитным стеклом и элементом, потери на отражение и поглощение достигли бы 20-30 % по сравнению с 12 % - без воздушной прослойки.
Электрические параметры солнечного элемента представляются как и отдельного солнечного элемента в виде вольтамперной кривой при стандартных условиях ( Standart Test Conditions), т.е., при солнечной радиации 1000 Вт/м2, температуре - 25оС и солнечном спектре на широте 45о(АМ1,5).
Точка пересечения кривой с осью напряжений называется напряжением холостого хода - Uxx, точка пересечения с осью токов – током короткого замыкания Iкз.
Максимальная мощность модуля определяется как наибольшая мощность при STC (Standart Test Conditions).
Напряжение, соответствующее максимальной мощности, называется напряжением максимальной мощности (рабочим напряжением - Up ), а соответствующий ток - током максимальной мощности (рабочим током - Ip ).
Значение рабочего напряжения для модуля, состоящего из 36 элементов, таким образом, будет около 16…17 В (0,45….0,47 В на элемент) при 25о С.
Такой запас по напряжению по сравнению с напряжением полного заряда АКБ (14,4 В) необходим для того, чтобы компенсировать потери в контроллере заряда-разряда АКБ (о нем речь пойдет позже), а в основном - снижение рабочего напряжения модуля при нагреве модуля излучением : температурный коэффициент для кремния составляет около минус 0,4 %/градус (0,002 В/градус для одного элемента).
Следует заметить, что напряжение холостого хода модуля мало зависит от освещенности, в то время как ток короткого замыкания, а соответственно и рабочий ток, прямо пропорциональны освещенности.
Таким образом, при нагреве в реальных условиях работы, модули разогреваются до температуры 60-70оС, что соответствует смещению точки рабочего напряжения, к примеру, для модуля с рабочим напряжением 17 В - со значения 17 В до 13,7-14,4 В (0,38-0,4 В на элемент).
Исходя из всего выше сказанного и надо подходить к расчету числа последовательно соединенных элементов модуля.
Если потребителю необходимо иметь переменное напряжение, то к этому комплекту добавляется инвертор-преобразователь постоянного напряжения в переменное.
Под расчетом ФЭС понимается определение номинальной мощности модулей, их количества, схемы соединения; выбор типа, условий эксплуатации и емкости АКБ; мощностей инвертора и контроллера заряда-разряда; определение параметров соединительных кабелей.
Прежде всего, надо определить суммарную мощность всех потребителей, подключаемых одновременно. Мощность каждого из них измеряется в ваттах и указана в паспортах изделий. На этом этапе уже можно выбрать мощность инвертора, которая должна быть не менее, чем в 1,25 раза больше расчетной. Следует иметь в виду, что такой хитрый прибор как компрессорный холодильник в момент запуска потребляет мощность в 7 раз больше паспортной. Номинальный ряд инверторов 150, 300, 500, 800, 1500, 2500, 5000 Вт. Для мощных станций (более 1кВт) напряжение станции выбирается не менее 48 В, т.к. на больших мощностях инверторы лучше работают с более высоких исходных напряжений.
Следующий этап - это определение емкости АКБ. Емкость АКБ выбирается из стандартного ряда емкостей с округлением в сторону, большую расчетной. А расчетная емкость получается простым делением суммарной мощности потребителей на произведение напряжения АКБ на значение глубины разряда аккумулятора в долях.
Например, если суммарная мощность потребителей 1000 Вт
ч в сутки, а допустимая глубина разряда АКБ 12 В - 50 %, то расчетная емкость составит:
1000 / (12
0,5) = 167 А
ч
При расчете емкости АКБ в полностью автономном режиме необходимо принимать во внимание и наличие в природе пасмурных дней в течении которых аккумулятор должен обеспечивать работу потребителей.
Последний этап - это определение суммарной мощности и количества солнечных модулей. Для расчета потребуется значение солнечной радиации, которое берется в период работы станции, когда солнечная радиация минимальна. В случае круглогодичного использования - это декабрь.
В разделе “метеорология” даны месячные и суммарные годовые значения солнечной радиации для основных регионов России, а также с градацией по различным ориентациям световоспринимающей плоскости.
Взяв оттуда значение солнечной радиации за интересующий нас период и разделив его на 1000, получим так называемое количество пикочасов, т.е., условное время, в течении которого солнце светит как бы с интенсивностью 1000 Вт/м2.
Например, для широты Москвы и месяца-июля значение солнечной радиации составляет 167 кВтч/м2 при ориентации площадки на юг под углом 40о к горизонту. Это значит, что среднестатистически солнце светит в июле 167 часов (5,5 часов в день) с интенсивностью 1000 Вт/м2, хотя максимальная освещенность в полдень на площадке, ориентированной перпендикулярно световому потоку, не превышает 700-750 Вт/м2.
Модуль мощностью Рw в течении выбранного периода выработает следующее количество энергии :
W = k Pw E / 1000, где Е - значение инсоляции за выбранный период, k- коэффициент равный 0,5 летом и 0,7 в зимний период.
Этот коэффициента делает поправку на потерю мощности солнечных элементов при нагреве на солнце, а также учитывает наклонное падение лучей на поверхность модулей в течении дня.
Разница в его значении зимой и летом обусловлена меньшим нагревом элементов в зимний период.
Исходя из суммарной мощности потребляемой энергии и приведенной выше формулы - легко рассчитать суммарную мощность модулей. А зная ее, простым делением ее на мощность одного модуля, получим количество модулей.
При создании ФЭС настоятельно рекомендуется максимально снизить мощность потребителей. Например, в качестве осветителей использовать (по возможности) только люминесцентные лампы. Такие светильники, при потреблении в 5 раз меньшем, обеспечивают световой поток, эквивалентный световому потоку лампы накаливания.
Для небольших ФЭС целесообразно устанавливать ее модули на поворотном кронштейне для оптимального разворота относительно падающий лучей. Это позволит увеличить мощность станции на 20-30 %.
-
Немного об инверторах.
Инверторы или преобразователи постоянного тока в переменный ток, предназначены для обеспечения качественного электропитания различной аппаратуры и приборов в условиях отсутствия или низкого качества электросети переменного тока частотой 50 Гц напряжением 220 В, различных аварийных ситуациях и т. п.
Инвертор представляет собой импульсный преобразователь постоянного тока напряжением 12 (24, 48, 60) В в переменный ток со стабилизированным напряжением 220 В частотой 50 Гц. Большинство инверторов имеет на выходе СТАБИЛИЗИРОВАННОЕ напряжение СИНУСОИДАЛЬНОЙ формы, что позволяет использовать их для электропитания практически любого оборудования и приборов.
Конструктивно инвертор выполнен в виде настольного блока. На передней панели инвертора расположены выключатель работы изделия и индикатор работы преобразователя. На задней панели изделия находятся выводы (клеммы) для подключения источника постоянного тока, например, АКБ, вывод заземления корпуса инвертора, отверстие с креплением вентилятора (охлаждение), трёхполюсная евро розетка для подключения нагрузки.
Стабилизированное напряжение на выходе инвертора позволяет обеспечить качественное электропитание нагрузки при изменениях/колебаниях напряжения на входе, например при разряде АКБ, или колебаниях тока, потребляемого нагрузкой. Гарантированная гальваническая развязка источника постоянного тока на входе и цепи переменного тока с нагрузкой на выходе инвертора позволяют не предпринимать дополнительных мер для обеспечения безопасности работы при использовании различных источников постоянного тока или какого-либо электрооборудования. Принудительное охлаждение силовой части и низкий уровень шума при работе инвертора позволяют, с одной стороны, обеспечить хорошие массогабаритные показатели изделия, с другой стороны, при данном типе охлаждения не создают неудобств при эксплуатации в виде шума.
-
Встроенная панель управления с электронным табло
-
Потенциометр емкости, который позволяет делать возможным точные регулировки
-
Нормализованная планка с подключением по выводам: WE WY STEROW
-
Встроенный оборот торможения
-
Радиатор с вентилятором
-
Эстетичное крепление
-
Питание 230 V - 400 V
-
Перегрузка 150% - 60s
-
Время разбега 0,01...1000 секунд
-
Встроенный электрический фильтр, класса А
-
Рабочая температура: от -5°C - до +45°C
-
Порт RS 485
-
Регулирование шага частоты: 0,01 Hz - 1 кHz
-
Класс защиты IP 20
-
Функционально обеспечивает: повышение, снижение частоты, контроль перегрузки, перегрева.
-
Гелиоэлектростанции.
Гелиоэнергетические программы приняты более чем в 70 странах - от северной Скандинавии до выжженных пустынь Африки. Устройства, использующие энергию солнца, разработаны для отопления, освещения и вентиляции зданий, небоскрёбов, опреснения воды, производства электроэнергии. Такие устройства используются в различных технологических процессах. Появились транспортные средства с "солнечным приводом" : моторные лодки и яхты, солнцелеты и дирижабли с солнечными панелями. Солнцемобили, вчера сравниваемые с забавным автоаттракционом, сегодня пересекают страны и континенты со скоростью, почти не уступающей обычному автомобилю.
Концентраторы солнечного излучения. С детства многие помнят, что с помощью собирательной линзы от солнечного света можно зажечь бумагу. В промышленных установках линзы не используются : они тяжелы, дороги и трудны в изготовлении. Сфокусировать солнечные лучи можно и с помощью вогнутого зеркала. Оно является основной частью гелиоконцентратора, прибора, в котором параллельные солнечные лучи собираются с помощью вогнутого зеркала. Если в фокус зеркала поместить трубу с водой, то она нагреется. Таков принцип действия солнечных преобразователей прямого действия.











