150524 (732759), страница 2
Текст из файла (страница 2)
Рис.1. Распад кристаллов хлорида натрия на отдельные ионы под влиянием диполей воды:
а – открытых отдельных ионов; б – гидратированные ионы натрия и хлора в растворе
Далее ион водорода Н+ присоединяется к атому кислорода в молекуле Н2О по донорно-акцепторному механизму. Пару электронов для образования связи поставляет атом кислорода. Следовательно, суммарно диссоциацию HCl можно изобразить уравнением:
HCl + Н2О Н3О+ + Сl-
Образующийся ион Н3О+ называется гидроксонием» 1.
«Стрелки показывают, что процесс идет в двух направлениях: наряду с диссоциацией молекулы на два иона идет обратный процесс рекомбинации (воссоединения) ионов в нейтральную молекулу.
Положительные ионы, движущиеся к катоду, называются катионами, отрицательные – анионами, т.е движущиеся к аноду.
Заметим, что если молекулы растворенного вещества не диссоциируют на ионы, то раствор не является проводником. Примером могут служить водные растворы сахара и глицерина, которые являются хорошими изоляторами» 1.
Степень диссоциации. Факторы, влияющие на степень диссоциации
«Поведение водных растворов электролитов в химических реакциях во многом зависит от того, насколько полно они распадаются на ионы. Для количественной оценки диссоциации важное значение имеют параметры, как степень и константа диссоциации.
Степень диссоциации а – это отношение числа молекул, распавшихся на ионы, к исходному числу молекул растворенного вещества:
Степень диссоциации иногда выражаю в процентах:
Степень диссоциации электролитов зависит от концентрации растворов: с понижением концентрации уменьшается взаимодействие ионов в растворе, которое приводит к образованию молекул, поэтому степень диссоциации возрастает. По степени диссоциации электролиты принято делить на сильные, слабые и средние. Сильные электролиты имеют а > 30%; слабые – а < 3%; средние - а в пределах от 3 до 30%.
К сильным электролитам в водных растворах относятся почти все соли, большинство неорганических кислот (HNO3, HCl, H2SO4, HClO4 и др.), а также гидроксиды щелочных и щелочноземельных металлов. Средними электролитами являются H2SO3, H3PO4 и др. такие соединения, как H2S, Cu(OH)2 и др. являются слабыми электролитами.
Деление электролитов на слабые, средние и сильные носит условный характер, так как степень диссоциации зависит от природы электролита и растворителя, от концентрации и температуры раствора. Водные растворы различных солей, кислот и оснований одной и той же концентрации в разной степени диссоциируют на ионы. На степень диссоциации существенно влияет присутствие одноименных ионов в растворе. Так, если в растворе имеется CuCl2, то равновесие системы
CuCl2 Cu2+ + 2Cl-
Можно сдвинуть влево путем увеличения концентрации ионов Cu2+или Cl-. Это достигается добавлением к раствору электролита, содержащего один из этих ионов» 1.
«Процессом, противоположным электролитической диссоциации является молизация – воссоединение ионов противоположных знаков в нейтральные молекулы. Если между процессами диссоциации и молизации существует динамическое, подвижное состояние, то а находится из уравнения:
При имеем
, т.е. в слабых растворах почти все молекулы диссоциированы. С ростом концентрации раствора а убывает. В сильных концентрированных растворах
» 2.
Необычные электролиты
Встречаются весьма и необычные электролиты. Например, электролитом является стекло, представляющее собой сильно переохлажденную жидкость, обладающую громадной вязкостью. При нагревании стекло размягчается и его вязкость сильно уменьшается. Присутствующие в стекле ионы натрия Na+ приобретают заметную подвижность, и становится возможным прохождение электрического тока, хотя при обычных температурах стекло является хорошим изолятором.
Наглядной демонстрацией этого может служить опыт, схема которого показана на рис.2.
Рис.2.
Демонстрация электропроводности стекла при нагревании
Стеклянная палочка АВ включена в осветительную сеть через реостат R. Пока палочка холодная, ток в цепи ничтожный из-за высокого сопротивления стекла. Если палочку нагреть газовой горелкой до температуры 300-400 0С, то ее сопротивление упадет до нескольких десятков омов и нить лампочки Л раскалится. Теперь можно закоротить лампочку ключом К. При этом сопротивление цепи уменьшится, и сила тока возрастет. В таких условиях палочка будет эффективно нагреваться электрическим током и раскаляться до яркого свечения, даже если убрать горелку1.
1 См.: бутиков Е.И., Кондратьев А.С., Уздин В.М. Физика. Строение и свойства вещества. М. – С.-П., ФИЗМАТЛИТ. – Стр. 141.
1 См.: Учебник «Физика-10» В.А.Касьянов , М., Дрофа, 2003. – Стр. 248.
1 См.: http://www.fizika.asvu.ru/page.php?id=34 - Первый закон термодинамики - закон сохранения энергии для систем, в которых существенную роль играют тепловые процессы
1 Грибов Л.А., Прокофьева Н.И. Основы физики. М.: Гардарика, 1998, с.219
2 Карпенков С.Х. Концепции современного естествознания. М.: Академический проект, 2003, с.158
3 Грибов Л.А., Прокофьева Н.И. Основы физики. М.: Гардарика, 1998, с.219
1 Карпенков С.Х. Концепции современного естествознания. М.: Академический проект, 2003,с. 161.
2 Касьянов В.А. Физика. М.: Дрофа, 2003, с. 269.
3 Грибов Л.А., Прокофьева Н.И. Основы физики. М.: Гардарика, 1998, с. 220.
4 Карпенков С.Х. Концепции современного естествознания. М.: Академический проект, 2003,с. 161.
1 Касьянов В.А. Физика. М.: Дрофа, 2003, с.269,270,271.
1 См.: Э.Т. Оганесян. Руководство по химии поступающим в вузы. М., «Высшая школа», 1991. – Стр. 116-117.
1 См.: Б.М. Яворский, А.А. Пинский. Основы физики. Том 1. Механика. Молекулярная физика. Электродинамика. М., «Наука». – Стр.454.
1 См.: Э.Т. Оганесян. Руководство по химии поступающим в вузы. М., «Высшая школа», 1991. – Стр. 119
2 См.: Б.М. Яворский. А.А. Детлаф. Справочник по физике. М., «Наука», 1996. – Стр. 226.
1 См.: Е.И.Бутиков, А.С. Кондратьев, В.М,Уздин. Физика. Строение и свойства вещества. М.-С.-П., «Физматлит», 2000. – Стр. 267.