150466 (732729), страница 2
Текст из файла (страница 2)
Учитывая, что современные магнитожёсткие материалы обладают большой коэрцитивной силой, можно положить относительную магнитную проницаемость
, тем самым считать материал магнитов абсолютно жестким магнетиком. В этом приближении наиболее приемлемым методом расчета следует считать метод граничных интегральных уравнений
. Для расчёта поля по этому методу необходимо проинтегрировать магнитные заряды по всей поверхности каждого из магнитов, входящих в кольцевой пояс. Так как эти магниты идентичны по геометрии, но занимают разное положение в пространстве, было получено общее выражение для численного расчёта поля от любого магнита, разработан алгоритм и написана программа на алгоритмическом языке FORTRAN для его реализации.
Расчеты проводились для трёх магнитных систем, имеющих порядки 2, 3 и 4. При этом все три системы имели одинаковые размеры RK, h (RK = 44,5 см, h = 12 см) и одинаковую суммарную площадь сечения всех магнитов, составляющих кольцевой пояс. Последнее требование вводилось с целью уравнивания всех трёх магнитных систем по количеству магнитожесткого материала, идущего на их изготовление. Различались эти системы только порядком симметрии n (количеством магнитов в кольцевом поясе) и длиной магнитов l: для системы второго порядка (n =2) l = 42 см, третьего (n =3) - l =28 см, четвёртого (n =4) - l =21 см. Оценка силового действия магнитной системы проводилась по величине равной произведению модуля поля Н на его градиент. Модуль поля Н вычислялся на двух разных расстояниях от оси системы:
и
при
. При этом величина силы приписывалась среднему значению радиуса
.
Рисунок 2 - угловая зависимость силового действия магнитных систем первого, второго и третьего порядка симметрии
Поскольку силовое действие рассмотренных нами магнитных систем характеризуется ярко выраженной угловой зависимостью (см. рисунок 1), то для всех трёх магнитных систем проводился расчет по дуге с шагом 1°
для всего периода повторяемости, который для магнитной системы, имеющей порядок симметрии n, равен
. Все рассчитанные значения силы суммировались, полученная сумма делилась на количество точек счёта. Тем самым для каждого порядка симметрии получалась оценка средней по углу силы.
Рисунок 3 - Влияние длины магнитных блоков на оптимальный порядок магнитной системы кольцевого магнита
Результаты численных расчетов, полученных с учетом вышеназванного приближения, представлены на рисунке 2. Кривая 1 разделяет области оптимальности третьего и второго порядков, кривая 3 – третьего и четвертого порядков. Пунктирные прямые 2 и 4 представляют собой асимптоты, к которым приближаются зависимости 1 и 3 при бесконечно большой длине стороны d магнита (d→∞). Видно, что по мере уменьшения размера d магнитной системы в осевом направлении обе границы сдвигаются в сторону больших значений отношения RT/RK. Таким образом, из рисунка 2 следует, что для каждого значения отношения радиуса очищаемой трубы к радиусу источника поля существует свой оптимальный порядок осевой симметрии источника, обеспечивающий наибольшее его силовое действие. При этом получено, что чем больше величина отношения RT/RK, тем меньшим должен быть порядок системы. Следовательно, источники высоких порядков отличаются близкодействием, а источники низких порядков – дальнодействием.
Сигнал от центров А1 и А2 регистрировался в области температур фазовых переходов парафаза – несоразмерная фаза (107 К) и несоразмерная – соразмерная фаза (120 К) [9]. В области перехода величины, используемые при анализе данных, могли изменяться [10]. Определенное значение эффективного сечения захвата для А2 имеет необычно большую величину, в то время как термостимулированная проводимость вблизи 120 К [4,11] регистрирует сигнал от ГЦ с чрезвычайно малым St. Объяснение этому следует искать в сопоставлении методов анализа данных.
Таким образом, впервые, проведенное методом фотоэлектрической нестационарной спектроскопии исследование монокристаллов TlGaSe2 позволило обнаружить пять глубоких центров и определить энергии их термоактивации, эффективные сечения захвата и знак захватываемых носителей заряда.
Результаты
Для получения водных суспензий наночастиц серебра применялся частотный лазер LS 2137 (Lotis- TII) на YAG:Nd. Параметры излучения: Еимп=120 мДж, tимп=20 нс, νследования имп= 5 Гц, dфокусировки= 1мм. Наработка серебряных наночастиц производилась длительным воздействием (30 мин) импульсного лазерного излучения на поверхность слитка серебра (проба 999,9) в воздухе, с последующим осаждением полученных нанообъектов в водную среду. В результате образовалась бледно-желтая оптически однородная жидкость.
В последующее время было произведено лазерное зондирование полученной суспензии, которое дало следующие результаты: средний размер частиц серебра в суспензии ~ 40 нм, количественная концентрация N~ 5 1011 см-3.
Параллельно во времени была произведена регистрация спектра поглощения данной суспензии в диапазоне 200-900 нм (спектр приведен на рис. 1). Позже эта процедура была неоднократно повторена через определенные промежутки времени, что позволило судить о эволюции спектра поглощения суспензии (см. рис. 2). На приведенном рисунке отчетливо видно, что с течением времени пик в районе 400 нм испытывает «красный сдвиг» (401 нм → 406 нм). Аналогичный эффект неоднократно наблюдался и другими авторами [1,3], что свидетельствует об общем характере поведения суспензий наночастиц серебра, сформированных разными методами (как химическими, так и физическими). В указанных работах авторы связывали «красный сдвиг» с постепенным укрупнением частиц, за счет их агрегации (под воздействием сил Ван-дер-Ваальса и др.).
В частности, в работе [3], наряду со спектром поглощения суспензии наночастиц серебра, приведено изображение данных нанообъектов, полученное с помощью электронной микроскопии. Из этих данных можно заключить, что пику поглощения суспензии в районе 400 нм соответствуют наночастицы с размерами 40-50 нм. Это с высокой степенью достоверности согласуется с данными, полученными в процессе выполнения данной работы.
Литература
-
Б.Г. Ершов. Рос. Хим. Ж. XLV №3,20 (2001).
-
N. Parkansky, B. Alterkop, R.L. Boxman. Powder Technology 150 № 36, 256 (2005).
-
А.В. Симакин, В.В. Воронов, Г.А. Шафеев. Труды института общей физики им. Прохорова РАН 60, 83 (2004).
-
В.К. Гончаров, К.В. Козадаев, М.И. Маркевич, А.М. Чапланов. Сборник научных статей «Лазерная и оптико-электронная техника» 10, 217 (2006).
-
Ю.В. Афанасьев, О.Н. Крохин Квантовая радиофизика, труды ФИ АН СССР 52, 118 (1970).
-
В.К. Гончаров, В.И. Карабань, А.В. Колесник. Квантовая электроника 12 № 4, 762 (1985).















