150390 (732702), страница 2

Файл №732702 150390 (Исследование спектров немодулированных и модулированных колебаний и сигналов) 2 страница150390 (732702) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

При АМ амплитуда сигнала меняется пропорционально низкочастотному информационному сигналу: , где - начальное значение амплитуды несущей; kAM - коэффициент амплитудного модулятора.

Поэтому сигнал с АМ: .

Пусть сообщение , тогда

,

где - коэффициент амплитудной модуляции, основной параметр АМ – колебаний с гармонической модуляцией.

Используя тригонометрическую формулу для произведения косинусов, получим:

Все три слагаемых – гармонические колебания: первое – несущее колебание, второе и третье слагаемые называют соответственно верхней и нижней боковыми составляющими. Таким образом, эта формула дает полное спектральное разложение АМ колебания (амплитудный и фазовый спектры). Ширина амплитудного спектра этого АМ - колебания равна (2) удвоенной частоте модулирующего сигнала.

Если модуляция осуществляется сплошным периодическим сигналом, в спектре которого содержатся много гармоник, то каждая из них даст две боковые составляющие в спектре модулированного сигнала. В спектре появляется верхняя и нижняя боковые полосы. Ширина спектра будет определяться модулирующей гармоникой с максимально высокой частотой. Обе боковые полосы несут полную информацию о н\ч модулирующем сигнале. Поэтому в технике связи часто используются сигналы с одной боковой полосой (ОБП- сигналы).

Амплитудно-импульсная модуляция (АИМ)

При АИМ амплитуда периодической последовательности прямоугольных импульсов изменяется пропорционально низкочастотному информационному сигналу. В теории информации АИМ – сигнал называют сигналом типа АИМ-1.

Пусть несущее колебание представляет собой периодическую последовательность прямоугольных импульсов u(t) с амплитудой Uн , которая описывается тригонометрическим рядом Фурье. Заменив в формуле для АМ величину (Uн cos0t) на u(t), получим:

, где - коэффициент или глубина модуляции импульсов.

Т.к. то тогда после преобразования получим выражение для АМ-сигнала:

Анализируя эту формулу, можно сделать вывод, что АИМ – сигнал содержит постоянную составляющую А0, гармонику А0М частоты модуляции и высшие гармонические составляющие Аn частоты следования импульсов n1, около каждой из которых симметрично по обе стороны расположены боковые составляющие с частотами (n1+) и (n1- ).

Фазовая модуляция (ФМ) – это изменение начальной фазы в\ч сигнала пропорционально н\ч сигналу:

, где kФМ – коэффициент фазового модулятора,

φ0 – начальная фаза в\ч колебания.

Амплитуда сигнала при ФМ не изменяется, а при гармонической ФМ возникает гармоническая ЧМ. Тогда полная фаза (аргумент косинуса) при ФМ будет равна

, т.е. изменение полной фазы не равно частоте несущей ω0.

Мгновенной частотой сигнала называют производную .

У идеального гармонического сигнала мгновенная частота постоянна: . При ФМ , т.е. при ФМ изменяется мгновенная частота сигнала.

Модулированный сигнал с ФМ:

, если , то

, где β = Sm kФМ – индекс фазовой модуляции. Это основной показатель сигнала с гармонической ФМ.

Частотная модуляция (ЧМ) – это изменение мгновенной частоты в\ч сигнала пропорционально н\ч сигналу:

,

где kЧМ - коэффициент частотного модулятора,

ω0 – частота в\ч колебания.

Амплитуда сигнала при ЧМ не изменяется. Увеличение уровня модулирующего сигнала вызывает увеличение мгновенной частоты сигнала, что соответствует увеличению числа макс. и мин. колебания на фиксируемом отрезке времени. При уменьшении мгновенной частоты сигнала увеличивается период квазигармонического сигнала.

При ЧМ полная фаза сигнала определяется по формуле:

,

т.е. при ЧМ изменяется начальная фаза сигнала, а при ФМ имеется изменение мгновенной частоты.

Поэтому ФМ и ЧМ – два тесно связанных друг с другом вида модуляции – относят к угловой модуляции (УМ). Т.к. при модуляции в\ч сигнал близок к идеальному гармоническому сигналу, то модулированный сигнал называют также квазигармоническим сигналом.

Используя введенные понятия мгновенной частоты при ЧМ, модулированный сигнал запишем в виде:

).

Если для ЧМ используется , то , где - девиация частоты, равная максимальному отклонению мгновенной частоты ω(t) от ω0. ∆ω – основной показатель сигнала с гармоническом ЧМ. Тогда при гармонической ЧМ yЧМ (t) имеет вид:

учм(t)=Um0cos(φ0t + 0)

Из анализа этой формулы видно, что при гармонической ЧМ возникает гармоническая ФМ с индексом .

Для определения спектра сигнала с гармонической УМ можно использовать формулы уфм(t) и учм(t), а так же используя тригонометрическое соотношение для косинуса суммы двух углов, получим: cos(βcost)=j0(β) - 2j2(β)cos2t + 2j4(β)cos4t -…….;

sin(βcost)=2j1(β)cost - 2j3(β)cos3t + 2j5(β)cos4t -…….,

где jn(β) – бесселева функция первого рода n-го порядка.

Рисунок 6. Графики первых восьми функций Бесселя

Подставляя последние выражения в уфм(t) и учитывая формулы для произведений тригонометрических функций, получим

учм(t)=j0(β)Um0cosω0t – j1(β)Um0sin(ω0+)t – j1(β)Um0sin(ω0-)t –

  • j2(β)Um0cos(φ0+2)t - j2(β)Um0cos(ω0-2)t +

+ j3(β)Um0sin(ω0+3)t + j3(β)Um0sin(ω0-3)t +

+ j4(β)Um0cos(ω0+4)t + j4(β)Um0cos(ω0-4)t - …..

Следовательно, при ФМ спектр колебаний содержит несущую и бесконечное число гармонических составляющих, расположенных симметрично относительно несущей частоты. При использовании формулы для ЧМ - сигнала спектр будет отличаться от спектра ФМ – сигнала только начальными фазами отдельных спектральных компонент.

Амплитуды несущей и боковых составляющих в спектре сигнала с УМ определяются функциями Бесселя.

Если индекс угловой модуляции β=1, то j0(β)=0,8 и j1(β)=0,5, а другие функции Бесселя будут пренебрежительно малы. Таким образом, при β< 1 спектр колебаний с ЧМ похож на спектр с АМ, а ширина спектра сигнала при β<1 примерно равна 2. При β>1образуются верхняя и нижняя боковые полосы, а значит ширина спектра примерно равна 2∆ω.

В настоящее время наиболее широко используются ЧМ и ФМ в радиовещании, в космической связи, в устройствах сотовой связи и в других системах передачи информации с малыми искажениями.

Для увеличения скорости передачи сообщений в современных системах связи и передачи информации используются смешанные виды модуляции. Например, в модемах используется амплитудно-фазовая или квадратурная модуляция.

17


17


17



Характеристики

Тип файла
Документ
Размер
2,1 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее