149954 (732490), страница 3
Текст из файла (страница 3)
Электрон –отрицательно заряженная элементарная частица, носитель наименьшей известной массы и наименьшего электрического заряда в природе. Открыт в 1897 г. английским ученым ДЖ. Дж. Томсоном.
Электрон – составная часть атома, число электронов в нейтральном атоме равно атомному номеру, т.е. числу протонов в ядре.
Первые точные измерения заряда электрона провел в 1909-1913 гг. американский физик Р. Милликен. Современное значение абсолютной величины элементарного заряда составляет
е =(4,8032420, 000014)10-10 или примерно 1,610-19 Кл. считается, что этот заряд действительно «элементарен», т. е. он не может быть разделен на части, а заряды любых объектов являются его целыми кратными. Вместе с постоянной Планка Н и скоростью света с элементарный заряд образует безразмерную постоянную = е2/ hc ~ 1/ 137. Постоянная тонкой структуры — один из важнейших параметров квантовой электродинамики, она определяет интенсивность электромагнитных взаимодействий. Масса электрона mе = (9,109534 ± 0,000047)10-28 г (в энергетических единицах ~0,5МэВ/с2). Если справедливы законы сохранения энергии и электрического заряда, то запрещены любые распады электрона. Поэтому электрон стабилен; экспериментально получено, что время его жизни не менее 1022 лет.
В 1925 г. американские физики С. Гаудсмит и Дж. Уленбек для объяснения особенностей атомных спектров ввели внутренний момент количества движения электрона — спин (s). Спин электрона равен половине постоянной Планка (Н — 1,05510-34 Дж/с), но физики обычно говорят просто, что спин электрона равен 1/2:5 = 1/2. Со спином электрона связан его собственный магнитный момент. Магнитный момент электрона должен был равняться в точности одному магнетону Бора.
Однако в 1947 г. в опытах было обнаружено, что магнитный момент примерно на 0,1% больше магнетона Бора. Объяснение этого факта было дано с учетом поляризации вакуума в квантовой электродинамике. Весьма трудоемкие вычисления дали теоретическое значение gе = 2(1,001159652460 ± 0,000000000148), которое можно сравнить с экспериментальными данными: для электрона gе = 2-(1,001159652200 ± 0,000000000040) и позитрона gе = 2• (1,(Ю 1159652222 ± 0,000000000050). Величины вычислены и измерены с точностью до двенадцати знаков после запятой, причем точность экспериментальных работ выше
'точности теоретических расчетов. Это самые точные измерения в физике элементарных частиц.
Особенностями движения электронов в атомах, подчиняющегося уравнениям квантовой механики, определяются оптические, электрические, магнитные, химические и механические свойства веществ.
Электроны участвуют в электромагнитных, слабых и гравитационных взаимодействиях.
Слабые взаимодействия электронов проявляются, например, в процессах с несохранением в атомных спектрах или в реакциях между электронами и нейтрино.
Не имеется никаких данных о внутренней структуре электрона. Современные теории исходят из представлений о лептонах, как о точечных частицах. В настоящее время это проверено экспериментально до расстояний 10-16 см. Новые данные могут появиться лишь с повышением энергии столкновения частиц в будущих ускорителях.















