149953 (732489), страница 5
Текст из файла (страница 5)
Подобно электрическому полю, магнитное поле существует реально, независимо от нас, от наших знаний о нем.
Магнитная индукция – способность магнитного поля оказывать силовое действие на проводник с током (векторная величина). Измеряется вТл.
За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле. Это направление совпадает с направлением положительной нормали к замкнутому контуру с током.
Направление вектора магнитной индукции устанавливают с помощью правила буравчика:
если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции.
Линии магнитной индукции.
Линия, в любой точке которой вектор магнитной индукции направлен по касательной – линии магнитной индукции. Однородное поле – параллельные линии, неоднородное поле – кривыми линиями. Чем больше линий, тем больше сила этого поля. Поля с замкнутыми силовыми линиями называют вихревыми. Магнитное поле - вихревое поле.
М
агнитный поток –величина равная произведению модуля вектора магнитной индукции на площадь и на косинус угла между вектором и нормалью к поверхности.
С
ила Ампера равна произведению вектора магнитной индукции на силу тока, длину участка проводника и на синус угла между магнитной индукцией и участком проводника.
где l – длина проводника, B – вектор магнитной индукции.
Силу Ампера применяют в громкоговарителях, динамиках.
Принцип работы: По катушке протекает переменный электрический ток с частотой, равной звуковой частоте от микрофона или с выхода радиоприемника. Под действием силы Ампера катушка колеблется вдоль оси громкоговорителя в такт с колебаниями тока. Эти колебания передаются диафрагме, и поверхность диафрагмы излучает звуковые волны.
32. Действие магнитного поля на движущийся заряд. Сила Лоренца.
Силу, действующую на движущуюся заряженную частицу со стороны магнитного поля, называю силой Лоренца.
Сила Лоренца. Поскольку ток представляет собой упорядоченное движение электрических зарядов, то естественно предположить, что сила Ампера является равнодействующей сил, действующих на отдельные заряды, движущиеся в проводнике. Опытным путём установлено, что на заряд, движущийся в магнитном поле, действительно действует сила. Эту силу называют силой Лоренца. Модуль FL силы находится по формуле
где В — модуль индукции магнитного поля, в котором движется заряд, q и v — абсолютная величина заряда и его скорость, - угол между векторами v и В. Эта сила перпендикулярна к векторам v и В, её направление находится по правилу левой руки: если руку расположить так, чтобы четыре вытянутых пальца совпадали с направлением движения положительного заряда, линии индукции магнитного поля входили в ладонь, то отставленный на 900 большой палец показывает направление силы. В случае отрицательной частицы направление силы противоположное.
Так как сила Лоренца перпендикулярна скорости частицы, то. она не совершает работу.
Силу Лоренца применяют в телевизорах, масс-спектограф.
Принцип работы: Вакуумная камера прибора помещена в магнитное поле. Ускоренные электрическим полем заряженные частицы (электроны или ионы), описав дугу, попадают на фотопластинку, где оставляют след, позволяющий с большой точностью измерить радиус траектории. По этому радиусу определяется удельный заряд иона. Зная же заряд иона, легко определить его массу.
33. Магнитные свойства вещества. Магнитная проницаемость. Ферромагнетизм.
Магнитная проницаемость. Постоянные магниты могут быть изготовлены лишь из немногих веществ, но все вещества, помещенные в магнитное поле, намагничиваются, т. е. сами создают магнитное поле. Благодаря этому вектор магнитной индукции В в однородной среде отличается от вектора Во в той же точке пространства в вакууме.
О
тношение характеризующее магнитные свойства среды, получило название магнитной проницаемости среды.
В однородной среде магнитная индукция равна: где — магнитная проницаемость данной среды безразмерная величина, показывающая во сколько раз μ в данной среде, больше μ в вакууме.
Магнитные свойства любого тела определяются замкнутыми электрическими токами внутри него.
Парамагнетиками называются вещества, которые создают слабое магнитное поле, по направлению совпадающее с внешним полем. Магнитная проницаемость наиболее сильных парамагнетиков мало отличается от единицы: 1,00036- у платины и 1,00034- у жидкого кислорода. Диамагнетиками называются вещества, которые создают поле, ослабляющее внешнее магнитное поле. Диамагнитными свойствами обладают серебро, свинец, кварц. Магнитная проницаемость диамагнетиков отличается от единицы не более чем на десятитысячные доли.
Ферромагнетики и их применение. Вставляя железный или стальной сердечник в катушку, можно во много раз усилить создаваемое ею магнитное поле, не увеличивая силу тока в катушке. Это экономит электроэнергию. Сердечники трансформаторов, генераторов, электродвигателей и т. д. изготовляют из ферромагнетиков.
При выключении внешнего магнитного поля ферромагнетик остается намагниченным, т. е. создает магнитное поле в окружающем пространстве. Упорядоченная ориентация элементарных токов не исчезает при выключении внешнего магнитного поля. Благодаря этому существуют постоянные магниты.
Постоянные магниты находят широкое применение в электроизмерительных приборах, громкоговорителях и телефонах, звукозаписывающих аппаратах, магнитных компасах и т. д.
Большое применение получили ферриты — ферромагнитные материалы, не проводящие электрического тока. Они представляют собой химические соединения оксидов железа с оксидами других веществ. Первый из известных людям ферромагнитных материалов—магнитный железняк — является ферритом.
Температура Кюри. При температуре, большей некоторой определенной для данного ферромагнетика, ферромагнитные свойства его исчезают. Эту температуру называют температурой Кюри. Если сильно нагреть намагниченный гвоздь, то он потеряет способность притягивать к себе железные предметы. Температура Кюри для железа 753 °С, для никеля 365 °С, а для кобальта 1000°С. Существуют ферромагнитные сплавы, у которых температура Кюри меньше 100°С.
34. Электромагнитная индукция. Магнитный поток.
Электромагнитная индукция. Закон электромагнитной индукции. Правило Ленца Мы знаем, что электрический ток создаёт магнитное поле. Естественно возникает вопрос: «Возможно ли появление электрического тока с помощью магнитного поля?». Эту проблему решил Фарадей, открывший явление электромагнитной индукции, которое заключается в следующем: при всяком изменении Магнитного потока, пронизывающего площадь, охватываемую проводящим контуром, в нём возникает электродвижущая сила, называемая э.д.с. индукции. Если контур замкнут, то под действием этой э.д.с. появляется электрический ток, названный индукционньм. Фарадей установил, что э.д.с. индукции не зависит от способа изменения магнитного потока и определяется только быстротой его изменения, т.е.
, ЭДС может возникать при изменении магнитной индукции В, при повороте плоскости контура, относительно магнитного поля. Знак минус в формуле объясняется по Правилу Ленца: Индуктивный ток направлен так, что своим магнитным полем препятствует изменению внешнего магнитного потока, порождающего индукционный ток. Соотношение называется законом электромагнитной индукции: ЭДС индукции в проводнике равна быстроте изменения магнитного потока, пронизывающего площадь, охватываемую проводником.
Магнитный поток. Магнитным потоком через некоторую поверхность называют число линий магнитной индукции, пронизывающих её. Пусть в однородном магнитном поле находится плоская площадка площадью S, перпендикулярная к линиям магнитной индукции. (Однородным магнитным полем называется такое поле, в каждой точке которого индукция магнитного поля одинакова по модулю и направлению). В этом случае нормаль n к площадке совпадает с направлением поля. Поскольку через единицу площади площадки проходит число линий магнитной индукции, равное модулю В индукции поля, то число линий, пронизывающих данную площадку будет в S раз больше. Поэтому магнитный поток равен:
Рассмотрим теперь случай, когда в однородном магнитном поле находится плоская площадка, имеющая форму прямоугольного параллелепипеда со сторонами а и b, площадь которой S = аb. Нормаль n к площадке составляет угол с направлением поля, т.е. с вектором индукции В. Число линий индукции, проходящих через площадку S и её проекцию Sпр на плоскость, перпендикулярную к этим линиям, одинаково. Следовательно, поток Ф индукции магнитного поля через них одинаков. Используя выражение, находим Ф = ВSпр Из рис. видно, что Sпр= ab*cos =Scos. Поэтому ф =BScos .
В системе единиц СИ магнитный поток измеряется в веберах (Вб). Из формулы следует
т.е. 1 Вб — это магнитный поток через площадку в 1 м2, расположенную перпендикулярно к линиям магнитнойиндукции в однородном магнитном поле с индукцией 1 Тл. Найдем размерность вебера:
Известно, что магнитный поток является алгебраической величиной. Примем магнитный поток, пронизывающий площадь контура, положительным. При увеличении этого потока
возникает з.д.с. индукции
, под действием которой появляется индукционный ток, создающий собственное магнитное поле, направленное навстречу внешнему полю, т.е. магнитный поток индукционного тока отрицателен.
Если же поток, пронизывающий площадь контура, уменьшается (
), то
, т.е. направление магнитного поля индукционного тока совпадает с направлением внешнего поля.
35. Закон электромагнитной индукции. Правило Ленца.
Если контур замкнут, то под действием этой э.д.с. появляется электрический ток, названный индукционньм. Фарадей установил, что э.д.с. индукции не зависит от способа изменения магнитного потока и определяется только быстротой его изменения, т.е.
Соотношение называется законом электромагнитной индукции: ЭДС индукции в проводнике равна быстроте изменения магнитного потока, пронизывающего площадь, охватываемую проводником. Знак минус в формуле, является математическим выражением правила Ленца. Известно, что магнитный поток является алгебраической величиной. Примем магнитный поток, пронизывающий площадь контура,положительным. При увеличении этого потока
возникает з.д.с. индукции
, под действием которой появляется индукционный ток, создающий собственное магнитное поле, направленное навстречу внешнему полю, т.е. магнитный поток индукционного тока отрицателен.
Если же поток, пронизывающий площадь контура, уменьшается
, то
, т.е. направление магнитного поля индукционного тока совпадает с направлением внешнего поля.
Рассмотрим один из опытов, проведённых Фарадеем, по обнаружению индукционного тока, а следовательно, и э.д.с. индукции. Если в соленоид, замкнутый на очень чувствительный электроизмерительный прибор(гальванометр), вдвигать или выдвигать магнит, то при движении магнита наблюдается отклонение стрелки гальванометра, свидетельствующее о возникновении индукционного тока. То же самое наблюдается при движении соленоида относительно магнита. Если же магнит и соленоид неподвижны относительно друг друга, то и индукционный ток не возникает. Из приведённого опыта следует вывод, что при взаимном движении указанных тел происходит изменение магнитного потока через нитки соленоида, что и приводит к появлению индукционного тока, вызванного возникающей э.д.с. индукции.
2. Направление индукционного тока определяется правилом Ленца: индукционный ток всегда имеет такое направление. что создаваемое им магнитное поле препятствует изменению магнитного потока, которое вызывает этот ток. Из этого правила следует, что при возрастании магнитного потока возникающий индукционный ток имеет такое направление, чтобы порождаемое им магнитное поле было направлено против внешнего поля, противодействуя увеличению магнитного потока. Уменьшение магнитного потока, наоборот, приводит к появлению индукционного тока, создающего магнитное поле, совпадающее по направлению с внешним полем. Пусть, например, в однородном магнитном поле находится проволочная квадратная рамка, пронизываемая магнитным полем Предположим, что магнитное поле возрастает. Это приводит к увеличению магнитного потока через площадь рамки. Согласно правилу Ленца, магнитное поле, возникающего индукционного тока, будет направлено против внешнего поля, т.е. вектор В2 этого поля противоположен вектору Ё. Применяя правило правого винта (см. § 65, п. З), находим направление индукционного тока Ii.
З. Явление электромагнитной индукции получило широкое применение в технике: промышленности получение электроэнергии на электростанциях, разогрев и плавление проводящих материалов (металлов) в индукционных электропечах и т.д.
36. Явление самоиндукции. Индуктивность. Энергия магнитного поля.
Явление самоиндукции. Явление возникновения э.д.с. в том же проводнике, по которому течёт переменный ток, называется самоиндукцией, а саму э.д.с. называют э.д.с. самоиндукции. Это явление объясняется следующим. Переменный ток, проходящий по проводнику, порождает вокруг себя переменное магнитное поле, которое, в свою очередь, создаёт магнитный поток, изменяющийся со временем, через площадь, ограниченную проводником. Согласно явлению электромагнитной индукции, это изменение магнитного потока и приводит к появлению э.д.с. самоиндукции.















