Stas1 (732299), страница 2

Файл №732299 Stas1 (Упругий и неупругий удар двух однородных шаров) 2 страницаStas1 (732299) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

V1ц


V1i F'Т

V1п

F'y Fy


V2i v2п

FT


V2ц

В следствии "скольжения" поверхности шаров возникнут силы трения F'T и FT , которые вместе с упругими силами взаимодействия F'y и Fy определят изменение скорости шаров после удара. Кроме того, силы трения вызовут вращение шаров вокруг центра. Только в том случае, когда силы трения FT очень малы по сравнению с упругими силами Fy, т.е. FT << Fy, можно пренебречь действием сил трения.

В этом случае задача о нецентральном столкновении шаров решается достаточно просто. Действительно, соединяя центры масс сталкивающихся шаров прямой и разложив скорость каждого шара на нормальную составляющую, направленную вдоль линии центров, и тангенциальную составляющую, перпендикулярную к ней. Так как согласно нашему предположению силы трения отсутствуют, то тангенциальные силы во время столкновения не возникают и, следовательно, тангенциальные скорости шаров изменяться не будут. Нормальные же составляющие скорости после удара можно определить на основании закона сохранения количества движения и закона сохранения энергии таким же путем, как и при центральном ударе.

Запишем уравнения:

m1 v1ц + m2 v2ц = m1ц v' 1ц + m2 v'2ц

m1 ( v21п + v21ц ) + m2 (v22п + v22ц) = m1 ( v'21п + v21ц ) + m2 (v'22п + v22ц

здесь неизвестны только две величины: v'1ц и v'2ц.

Общие закономерности нецентрального удара шаров в этом случае можно найти следующим путем. Предположим, что до удара шар 2 покоится, а шар 1 движется. Сила взаимодействия в момент удара проходит через центры шаров (нет трения), и ее направление зависит от "прицельного" расстояния δ, равного расстоянию центра покоящегося шара от линии полета центра другого шара (до удара). Плоскость чертежа совпадает с плоскостью, проходящей через центры шаров и вектор скорости шара 1.

F


2

r2


δ

r1


Р

1


F'

Удар произойдет при условии δ < r1 + r2, где r1 и r2 – радиусы шаров. Угол θ зависит от δ и r1 + r2. Составляющая количества движения шара 1 (ударяющего), нормальная к F (сила взаимодействия), остается неизменной. Составляющие количеств движения шаров по направлению силы F изменяются в соответствии с законами центрального удара.

По закону постоянства количества движения:

P = P1 + P2

где P – количество движения шара 1 до удара, P1 и P2 – количества движения шаров 1 и 2 после удара соответственно.


P2

P1

θ

P

Закон сохранения энергии можно записать так:

P2/m1 = P21/m1 + P22/m2

Так как P = m v и mv2 = P2 / m для любого тела.

Вектор P2 составляет угол θ с вектором P , покоившийся шар отскочит под углом θ к начальной скорости первого шара, тогда из треугольника векторов следует:

P21 = P22 + P2 - 2 P P2 cos θ

Учитывая постоянство энергии, исключаем P1 и получаем

P2 = 2 m2 P cos θ / (m1 + m2) = β P cos θ

β = 2 m2 / (m1 + m2)

Отсюда видно, что общее соотношение между Р2 и Р зависит от угла θ и соотношения масс m1/m2.

Следует различать два случая: m1 > m2 и m1 < m2. В первом случае β < 1, тяжелый шар ударяет легкий. Конец вектора Р2 описывает окружность диаметром βР. Оба шара после удара летят в сторону начального движения первого шара. Величина угла θ изменяется от 0 до π/2. Угол отклонения первого шара может изменяться от 0 до некоторого φмакс.. Одному значению φ соответствуют два значения θ.

β < 1

Р2

Р1

А

В Р

φ

βР


Точка В представляет центральный удар, оба шара летят после удара по одному направлению. Точка А представляет промах (шары не задели друг друга).

Во втором случае, при m1 < m2, легкий шар ударяет тяжелый. Здесь β > 1 и шар 1 после удара может лететь назад. Угол отклонения налетающего шара φ изменяется от 0 до π.




А В

βР


Точка В представляет центральный удар. Каждому значению φ соответствует только одно значение θ.

При одинаковых массах шаров m1 = m2 картина возможных количеств движения показана на рисунке.



Р2


А В

φ

Угол φ изменяется от 0 до π/2. При центральном ударе шар 1 останавливается, а шар 2 с той же скоростью движется далее (точка В). Угол разлета шаров θ + φ всегда равен π/2.

Угол θ нетрудно связать с прицельным расстоянием δ и показать, что

(r1 + r2)sin θ = δ

Зная δ, диаметры шаров и их массы, найдем θ и β, по данным Р определим Р2 и Р1, которые в свою очередь определяют скорости и направления шаров после удара.

4. Неупругое соударение тел

Абсолютно неупругим называют такой удар, после которого скорости обоих соударяющихся тел оказываются одинаковыми. Чтобы это стало возможным, соударяющиеся тела должны обладать такими свойствами, что силы, возникающие при их деформации, зависят не от величины деформации, а от скорости изменения деформации. Такие свойства присущи, например, мягкой глине, пластилину. При неупругом соударении происходит следующее. В начальный момент удара скорость деформации велика (шары сжимаются), поэтому возникают значительные силы, сообщающие обоим шарам ускорения, направленные в противоположные стороны. По мере развития удара скорости деформации шаров уменьшаются, а сами деформации увеличиваются до тех пор, пока скорости шаров не окажутся равными. В этот момент деформации шаров перестанут изменяться, исчезнут силы, и оба шара будут двигаться с одинаковой скоростью. При абсолютно неупругом ударе выполняются законы сохранения импульса и полной энергии. Механическая же энергия тел до удара больше механической энергии после удара, так как она частично (или полностью) переходит во внутреннюю энергию тел и расходуется на работу по деформации тел. Для определения скорости тел после взаимодействия рассмотрим удар двух шаров (материальных точек), образующих замкнутую систему. Массы шаров m1 и m2, скорости до удара V1i и V2i. Согласно закону сохранения суммарный импульс шаров до удара должен быть таким же, как после удара:

m1 V1i + m2 V2i = (m1 + m2) U

где U - скорость после удара, одинаковая для обоих шаров. Из уравнения следует, что:

U = ( m1 V1i + m2 V2i ) / (m1 + m2)

Закон сохранения энергии для неупругого удара рассматриваемых шаров имеет следующий вид:

m1 V1i2 / 2 + m2 V2i2 / 2 = (m1 + m2 ) U2 + W

где W - изменение внутренней энергии системы.

Кинетическая энергия тел до удара имеет следующую величину:

W1 = m1 V1i2 / 2 + m2 V2i2 / 2

А кинетическая энергия после удара:

W2 = (m1 + m2 ) U2/2 = ( m1 V1i + m2 V2i )2 /2 (m1 + m2)

Потери механической энергии, или часть энергии, которая перешла в тепловую форму составляет:

W = W1 - W2 = m1 m2 (V1i – V2i)2 / 2 (m1 + m2 )

Величина V1i – V2i представляет относительную скорость движения тел до удара. Поэтому энергия, перешедшая в тепло, зависит от соотношения масс соударяющихся тел m1 m2 /(m1 + m2 ) и относительной скорости движения их до удара.

Энергию потерь можно рассматривать как кинетическую энергию некоторой эффективной массы:

m0 = m1 m2 / (m1 + m2)

движущихся с относительной скоростью V'i =V1i – V2i.

Для конкретных расчетов скорости нужно спроектировать соотношение импульсов на выбранные направления. Если до удара скорости шаров направлены вдоль прямой, проходящей через их центры, удар называют центральным. Скорость шаров после такого удара будет направлена по той же прямой. Поэтому уравнение сохранения импульсов можно рассматривать как скалярное. Но скорости при этом надо считать совпадающими по знаку, когда они направлены в одну сторону и противоположными по знаку, когда они направлены в противоположные стороны. Рассмотрим некоторые частные случаи.

1. Шары движутся в одном направлении. Удар возможен, если скорости V1i и V2i различны. Например, V2i > V1i, т.е. второй шар догоняет первый. После удара шары будут двигаться в ту же сторону со скоростью большей, чем скорость первого шара и меньшей, чем скорость второго. Если при этом массы шаров одинаковы, то

U =( V1i + V2i ) / 2

2. Шары движутся навстречу друг другу. После удара шары будут двигаться вместе в ту сторону, в которую двигался шар, обладающий большим импульсом. Если импульсы обоих шаров равны по величине, то после удара оба шара остановятся.

3. В случае нецентрального удара (рис.3.6.2а) скорости V1i и V2i можно разложить на составляющие V1X и V2X в направлении линии, соединяющей центры шаров (ось Х), и состaвляющие V1Y и V2Y в перпендикулярном направлении (ось У). Для составляющих V1X , V2X и V1Y ,V2Y записать закон сохранения импульса в том же виде, как и при центральном ударе и определить составляющую результирующей скорости.

Рассмотрим неупругий удар более подробно. При неупругом ударе часть кинетической энергии налетающего шара теряется с выделением тепла. В предельном случае абсолютно неупругого удара налетающее тело слепляется с покоящимся телом, кинетическая энергия их относительного движения обращается в ноль и они продолжают движение, как единое тело. В большинстве практических случаев мы имеем дело с частично упругим ударом, когда в теле после столкновения возбуждаются деформационные колебания, затухающие со временем. Возбуждение таких колебаний можно смоделировать при помощи двух одинаковых шариков, соединённых пружиной. Предположим, что абсолютно упругий шар сталкивается с пружинным осциллятором. Массы шаров одинаковы и равны m. Так как в момент удара пружина ещё не действует, налетающий шар останавливается, а левый шар осциллятора приводится в движение со скоростью налетающего шара v. При этом центр масс осциллятора движется со скоростью v/2. Со временем колебания осциллятора затухнут и он будет продолжать поступательное движение со скоростью v/2, а суммарная энергия всей системы составит лишь половину от энергии налетающего шара. Другая половина выделится в виде тепла в осцилляторе.

Удар обычных неупругих тел соответствует промежуточному случаю между идеально упругим и полностью неупругим ударами. Ему аналогичен удар аналогичен удар двух шаров через неупругую пружину, которая сжимаясь за первую половину времени удара до некоторой величины, не примет своих первоначальных размеров после удара; или расталкивающая сила во время сжатия будет больше, чем во вторую половину времени удара при расширении пружины. Часть потенциальной энергии сжатия пружины перейдет в тепло и не будет обращена в кинетическую энергию движения. Следовательно, закон сохранения механической энергии в этом случае нельзя применять. Условие равенства скоростей после удара также не будет иметь места, как это было при полностью неупругом ударе, так как после удара оба тела движутся с различными скоростями.

Неупругий удар можно характеризовать той долей энергии деформации, которая обращается в тепло за время удара. Но еще Ньютоном было найдено, что при неупругом ударе шаров из определенного материала величины относительных скоростей до и после удара находятся в постоянном отношении, и такой удар характеризуется коэффициентом восстановления относительной скорости после удара:

е = |V2 – V1| / |V2i – V1i|

где V2i – V1i – относительная скорость до удара, а V2 – V1 – после удара. Опыт показывает, что с некоторой степенью точности можно считать величину е постоянной и зависящей только от материала соударяющихся шаров.

При идеально упругом ударе относительная скорость остается той же самой по величине, но меняет свой знак:

V1i – V2i = - (V1 – V2)

Коэффициент восстановления всегда меньше единицы, ибо при упругом ударе он равен единице, при полностью неупругом ударе равен нулю, так как в этом случае

V2 – V1 = 0

Зная коэффициент е, можно подсчитать скорости движения шаров после удара и потери энергии.

Используемая литература:
1. Д.В.Сивухин, "Общий курс физики. Механика", Наука, 1979
2. О.Д.Шебалин, "Физические основы механики и акустики", Высш. школа, 1981
3. С.П.Стрелков, "Механика", Наука, 1975
4. К.Шварц, Т.Гольдфарб, "Поиски закономерностей в физическом мире", пер. с англ., Москва, Мир, 1977
5. Лабораторные занятия по физике, под ред. Л.Л.Гольдина, Москва, Наука, 1983

6. А.И. Иванов, "Закономерности удара в механических системах", Природа, 1999, №10

Характеристики

Тип файла
Документ
Размер
111 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6902
Авторов
на СтудИзбе
268
Средний доход
с одного платного файла
Обучение Подробнее