240-1983 (732290), страница 2

Файл №732290 240-1983 (Углеродные нанотрубки) 2 страница240-1983 (732290) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

причем равенство возможно только в том случае, когда в вершине сходятся три грани. В нашем случае, для идеальных фулеренов и для нанотрубок, запаянных с обоих концов это выполнено. Отсюда видно, что в состав них может входить ровно 12 пятиугольников.

Вторым следствием теоремы Эйлера является так называемая эйлерова характеристика поверхности.

Пусть Q — поверхность, которая допус­кает разбиение на многоугольники; это означает, что на поверхности можно «нарисовать» граф, разбивающий ее на конечное число кусков, гомеоморфных кругу. Обозначим число вершин и ребер графа через В и Р, а число многоугольников, на которые Q разбивается этим графом,— через Г. Число

X (Q) = В - Р + Г (6)

называется эйлеровой характеристикой поверхности Q. Строго говоря, число (6) определяется не самой поверхностью Q, а выбором ее разбиения на многоугольники. Однако теорема Эйлера показывает, что для поверхности Q, гомеоморфной сфере, эйлерова характеристика не зависит от выбора разбиения на многоугольники: Х(Q)=2. Докажем, что и для любой поверхности Q ее эйлерова характеристика Х(Q) не зависит от выбора разбиения на многоугольники, а определяется самой по­верхностью.

В самом деле, пусть на, поверхности Q «нарисованы» два графа G1, G2, каждый из которых задает разбиение на многоугольники. Числа вершин, ребер и граней разбиения, определяемого графом G1, обозначим через B1, Р1, Г1, а соответствующие числа для разбиения, определяемого графом G2,— через В2, Р2, Г2. Вообще говоря, графы G1 и G2 могут пересекаться в бесконечном числе точек. Однако, «пошевелив» граф G1, мы сможем добить­ся того, чтобы G1 и G2 пересекались лишь в конечном числе точек.

Далее, если граф G1 G2 несвязен, то, «пошевелив» графы G1, G2, можно добиться того, чтобы они имели общие точки и, следовательно, их объединение было связным. Итак, мы можем предполагать, что графы G1 и G2 пересекаются лишь в конечном числе точек и имеют связ­ное объединение G1 G2. Считая новыми вершинами все точки пересечения графов G1 и G2, а также все вершины этих графов, мы найдем, что G1 G2 является конечным связным графом (его ребрами являются куски ребер графов G1 и G2, на которые они разбиваются вершинами графа G1 G2).

Обозначим через В и Р число вершин и ребер графа G1 G2, a через Г — число граней, на которые он разбивает поверхность Q. Идея состоит в том, чтобы доказать равенства

(7)

из которых и будет следовать, что B1-P11=B2-P22. Оба равенства (7) доказываются одинаково; докажем первое.

Пусть М - некоторый многоугольник («грань»), определяемый графом G1. Обозначим число вершин и ребер графа G1 G2, расположенных внутри М (не на контуре), через В' и Р', а число вершин (а значит, и ребер) этого графа, расположенных на контуре многоугольника М, через q. Далее, число граней, определяемых графом G1 G2 и содержащихся в М, обозначим через Г'. На рис. 4 имеем В'=4, Р'=12, Г'=9, q=15.

Вырежем теперь многоугольник М (вместе с имеющейся на нем частью графа G1 G2) из поверхности Q. Так как М гомеоморфен кругу и, значит, полусфере, то его можно второй («нижней») полусферой дополнить до поверхности, гомеоморфной сфере (рис. 5). На этой сфере расположен связный граф, имеющий В'+q вершин, Р'+q ребер и определяющий Г'+1 граней (Г' граней содержится в М и еще одной гранью является нижняя полусфера). Следовательно, согласно (1), (В'+q)- (Р'+q)+(Г'+1)=2, т. е.

В'-Р'+Г=1. (8)

Если теперь (возвращаясь к поверхности Q, на которой начерчен граф G1 G2) мы выбросим из графа G1 G его часть, расположенную внутри М, то получится новый граф, для которого, однако, число В-Р+Г останется таким же, как и для графа G1 G2. В самом деле, вместо В' вершин, Р' ребер и Г' граней, имевшихся внутри М, мы теперь будем иметь 0 вершин, 0 ребер и одну грань (сам многоугольник М), т. е. число В'-Р'+Г' заменится на 0-0+1, а это, согласно (8), ничего не меняет.

Рис. 4. Рис. 5.

Теперь ясно, что если мы из графа G1 G2 выбросим его части, расположенные внутри всех многоуголь­ников, определяемых графом G1, то получим новый граф G*, для которого число В-Р+Г будет таким же, как и для графа G1 G2 Иначе говоря,

В***=В-Р+Г (9)

где В* и Р* — число вершин и ребер графа G*, а Г* — число определяемых им граней.

Заметим, наконец, что граф G* получается из G1 до­бавлением нескольких новых вершин на ребрах. Добавление каждой новой вершины увеличивает число ребер на 1 (поскольку добавленная вершина разбивает одно из ребер на два). Следовательно, если переход от графа G1 к G* осуществляется добавлением k новых вершин, то В*=B1 + k1*P*=P1+k. Кроме того, Г*1 (так как граф G* определяет те же грани, что и граф G1). Таким образом,

В***=(B1+k)-(P1+k)+Г1111,

а это, согласно (9), и дает первое из соотношений (7).

Итак эйлерова характеристика поверхности не зави­сит от ее разбиения на многоугольники, а определяется самой поверхностью. Кроме того, если поверх­ности Q1и Q2 гомеоморфны, то X(Q1)=Х(Q2).

Отсюда имеем еще одно следствие: т.к. эйлерова характеристика поверхности для незакрытой трубки равна нулю, то, рассуждая также как и в первом следствии, можно получить неравенство

Это соотношение плохо описывает идеальную нанотрубку, но для реальной нанотрубки с «дислокациями» оно качественно правильно.

Итак, в данной части работы была доказана теорема Эйлера, которая позволила нам теоретически доказать необходимость перестройки графитовой плоскости в случаях, когда реакции происходят с образованием фулеренов и запаянных нанотрубок, а также было найдено соотношение для многоугольников в случае, когда имеет место рассмотрение реальных нанотрубок с дефектами.

При использовании для получения нанотрубок электрической дуги с графитовым электродом образуются преимущественно многослойные нанотрубки, диаметр которых лежит в диапазоне от одного до нескольких десятков нанометров. Кроме того, такие нанотрубки отличаются различной хиральностью, что определяет различие их электронной структуры и электрических характеристик. Распределения нанотрубок по размерам и углу хиральности критическим образом зависят от условий горения дуги и не воспроизводятся от одного эксперимента к другому. Это обстоятельство, а также разнообразие размеров и форм нанотрубок, входящих в состав катодного осадка, не позволяет рассматривать данный материал как вещество с определенными свойствами. Частичное преодоление указанной проблемы стало возможным благодаря использованию процедуры обработки данного материала сильными окислителями. Методы очистки и обработки нанотрубок с помощью окислителей основан на том обстоятельстве, что реакционная способность протяженного графитового слоя, содержащего шестичленные графитовые кольца и составляющие поверхность нанотрубок, значительно меньше соответствующих характеристик для сфероидальной поверхности, содержащей также некоторое количество пятичленных колец.

Рис. 6. Иллюстрации хиральности нанотрубок - часть графитовой плоскости, свертывание которой в цилиндр приводит к образованию однослойной нанотрубки.

Одним из основных параметров, характеризующих нанотрубки является хиральность. Трубки характеризуются различной хиральностью, т.е. углом ориентации графитовой плоскости относительно оси трубки. Идеализированная нанотрубка представляет собой свернутую в цилиндр графитовую плоскость, т.е. поверхность выложенную правильными шестиугольниками, в вершинах которых расположены атомы углерода. Результат такой операции зависит от угла ориентации графитовой плоскости относительно оси нанотрубки. Угол ориентации задает хиральность нанотрубки, которая определяет, в частности ее электрические характеристики. Это свойство нанотрубок иллюстрируется на рис. 6, где показана часть графитовой плоскости и отмечены возможные направления ее сворачивания. Хиральность нанотрубок обозначается набором символов (m,n), указывающим координаты шестиугольника, который в результате сворачивания плоскости должен совпасть с шестиугольником, находящимся в начале координат. Некоторые из таких шестиугольников вместе с соответствующими обозначениями отме­чены на рисунке. Другой способ обозначения хираль-ности состоит в указании угла а между направлением свора-чивания нанотрубки и направлением, в котором соседние шестиугольники имеют общую сторону. Среди различных возможных направлений сворачи-вания нанотрубок выделяются направле-ния, для которых совмещение шести-угольника (m,n) с началом координат не требует искажения в его структуре. Этим направлениям соответствуют угол а=О и а=30°. Указанные конфигурации отвечают хиральностям (m,0) и (2n,n) соответ­ственно.

Индексы хиральности однослоиной нанотрубки (m,n) однозначным образом определяют ее диаметр D. Эта связь очевидна и имеет следующий вид:

где = 0,142 нм — расстояние между соседними ато­мами углерода в графитовой плоскости.

Разрешающая способность современных электрон­ных микроскопов недостаточна для непосредственного различения нанотрубок с разной хиральностью, поэтому основной способ определения данного параметра связан с измерением их диаметра.

Рис. 7. Идеальная модель однослойной нанотрубки.

Рассмотрим упрощенную модель нанотрубки. На рисунке 7 представлена идеализированная модель однослойной нанотрубки. Такая трубка не образует швов при сворачивают и заканчивается по-лусферическими вершинами, содер-жащими, наряду с правильными шес-тиугольниками, также по шесть правильных пяти­угольников. Нали-чие пятиугольни-ков на концах трубок позволяет рассматривать их как предельный случай молекул фуллеренов, длина продольной оси которых значительно превышает диаметр.

Структура однослойных нанотрубок, наблюдаемых экспериментально, во многих отношениях отличается от представленной выше идеализированной картины. Пре­жде всего это касается вершин нанотрубки, форма которых, как следует из наблюдений, далека от идеаль­ной полусферы.

Особое место среди однослойных нанотрубок зани­мают нано­трубки с хиральнстью (10,10). В нанотрубках такого типа две из С-С-связей, входящих в состав каждого шестичленного кольца, ориентированы параллельно продольной оси трубки. Согласно расчетам нанотрубки с подобной структурой должны обладать чисто металлической проводимостью. Кроме того, тер­модинамические расчеты показывают, что такие трубки обладают повышенной стабильностью и дол­жны преобладать над трубками другой хиральности в условиях, когда преимущественно образуются однослойные нанотрубки. До недавнего времени такие идеализи­рованные условия казались недостижимыми. Однако в результате облучения поверхности графита импуль­сами двух лазеров в присутствие никелевого катализа­тора был осуществлен синтез нанотрубок диаметром 1.36 нм и длиной до нескольких сот микрон, обладаю­щих металлической проводимостью, выводы теории нашли экспериментальное подтверждение. Как следует из измерений, выполненных с помощью электронного микроскопа и рентгеновского дифрактометра, нано­трубки с преимущественной хиральностью (10,10) обра­зуют жгуты диаметром от 5 до 20 мкм, свернутые в клубки и запутанные причудливым образом. Кроме того, измерения спектров ЭПР, подкрепленные пря­мыми измерениями проводимости нанотрубок, указы­вают на металлический характер электропроводности этих материалов.

При прямом измерении хиральности нанотрубок использовали электронно-дифракционный микроскоп с чрезвычайно малым поперечным сечением электронного пучка (около 0,7 нм), быстро сканируемого по области диаметром 10 - 20 нм, заполненной жгутом нанотрубок. На основании получаемой таким образом дифракцион­ной картины делаются выводы о структуре нанотрубок, входящих в состав канатов. Было изучено 35 жгутов диаметром от 3 до 30 нм. Все жгуты, кроме двух, состояли из нанотрубок с хиральностью, близкой к (10,10). Детальный анализ показал, что 44% нанотрубок имели хиральность (10,10), 30% — (11,9) и 20% — (12,8).

Характеристики

Тип файла
Документ
Размер
3,52 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6936
Авторов
на СтудИзбе
265
Средний доход
с одного платного файла
Обучение Подробнее