termodin (732218), страница 2

Файл №732218 termodin (ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ) 2 страницаtermodin (732218) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Возьмем дифференциал от функции (11).

(12)

Из сравнения с (2) заключаем, что естественными пе­ременными для свободной энергии являются Т и V. В соответствии с (3)

(13)

Заменим в (4) на dU + рdV и разделим полу­чившееся соотношение на dt (t - время). В результате получим, что

(14)

Если температура и объем остаются постоянными, то со­отношение (14) может быть преобразовано к виду

(15)

Из этой формулы следует, что необратимый процесс, про­текающий при постоянных температуре и объеме, сопро­вождается уменьшением свободной энергии тела. По до­стижении равновесия F перестает меняться со временем. Таким образом, при неизменных Т и V равновесным является состояние, для которого свободная энергия мини­мальна.

4. Термодинамический потенциал Гиббса

Термодинамическим потенциалом Гиббса назы­вается функция состояния, определяемая следующим образом:

(16)

Ее полный дифференциал равен

(17)

Следовательно, естественными переменными для функ­ции G являются р и Т. Частные производные этой функ­ции равны

(18)

Если температура и давление остаются постоянными, соотношение (14) можно записать в виде

(19)

Из этой формулы следует, что необратимый процесс, про­текающий при постоянных температуре и давлении, со­провождается уменьшением термодинамического потен­циала Гиббса. По достижении равновесия G перестает изменяться со временем. Таким образом, при неизмен­ных Т и р равновесным является состояние, для которого термодинамический потенциал Гиббса минимален.

5.Энтальпия

Если процесс происходит при постоян­ном давлении, то количество получаемой телом теплоты можно представить следующим образом:

(20)

Функцию состояния

(21)

называют энтальпией или тепловой функцией. Из (20) и (21) вытекает, что количество теплоты, получаемой телом в ходе изобарического процесса, равно

(22)

или в интегральной форме

(23)

Следовательно, в случае, когда давление остается постоян­ным, количество получаемой телом теплоты равно прира­щению энтальпии.

Дифференцирование выражения (21) с учетом (5) дает

(24)

Отсюда заключаем, что энтальпия есть термодинамиче­ская функция в переменных S и р. Её частные произ­водные равны

(25)

В соответствии с (22) теплоемкость при постоянном давлении

(26)

Таким образом, если объем системы остается постоянным, то тепло Q равно приращению внутренней энергии системы. Если же постоянно давление, то оно выражается приращением энтальпии. В обоих случаях величина Q не зависит от пути перехода, а только от начального и конечного состояний системы. Поэтому на основании опытов при постоянном объеме или при постоянном давлении и могло сложиться представление о какой-то величине Q, содержа­щейся в теле и не зависящей от способа приведения его из нуле­вого состояния в рассматриваемое. Величина Q имеет различный смысл в зависимости от того, что остается постоянным: объем или давление. В первом случае под Q следует понимать внутреннюю энер­гию, во втором — энтальпию. Но в ранних опытах это различие ускользало от наблюдений, так как опыты производились с твердыми и жидкими телами, для которых оно незначительно благодаря малости коэффициентов теплового расширения твердых и жидких тел. В обоих случаях имеет место сохранение величины Q, но оно сводится к закону сохранения энергии.

В таблице приведены основные свойства термодинамических функций.

Название и обозначение термодинамической функции

Свойства

Внутренняя энергия

при адиабатическом процессе

при

Свободная энергия

при обратимом изотермическом процессе

для равновесного состояния при и

Энтальпия

при

Термодинамический потенциал Гиббса

для равновесного состояния при и

6. Некоторые термодинамические соотношения

Итак, мы получили соотношения

(27)

(28)

(29)

(30)

Отсюда

(31)

(32)

(33)

(34)

Отметим два следствия выведенных уравнений. Из определения функций F и G следует . Подставив сюда выражения для энтропии из формул (33) и (34), получим

(35)

(36)

Эти уравнения называются уравнениями Гиббса — Гельмгольца. Сразу можно отметить пользу, которую можно извлечь из этих уравнений. Часто бывает легко найти свободную энергию F с точностью до слагаемого, зависящего только от температуры. Это можно сде­лать, вычислив изотермическую работу, совершаемую системой. Тогда формула (35) позволяет с той же неопределенностью найти и внутреннюю энергию системы.

Если известна функция , то дифференцированием ее по S и V можно найти температуру и давление системы, т. е. полу­чить полные сведения о ее термических свойствах. Затем по фор­муле можно найти и соответствующие теплоемкости, т. е. получить полные сведения также и о калорических свойствах системы. То же самое можно сделать с помощью любого из оставших­ся трех канонических уравнений состояния.

Далее, вторичным дифференцированием из соотношений (31) находим

Отсюда на основании известной теоремы анализа о перемене порядка дифференцирования следует

(37)

Аналогично,

(38)

(39)

(40)

Эти и подобные им соотношения называются соотношениями вза­имности или соотношениями Максвелла. Они постоянно исполь­зуются для вывода различных соотношений между величинами, характеризующими термодинамически равновесные состояния си­стемы. Такой метод вывода называется методом термодинами­ческих функций или термодинамических потенциалов.

7. Общие критерии термодинамической устойчивости

Допустим, что адиабатически изолированная система находится в термодинамическом равновесии, причем ее энтропия S в рассматри­ваемом состоянии максимальна, т. е. больше энтропий всех возможных бесконечно близких состояний, в которые система может перей­ти без подвода или отвода тепла. Тогда можно утверждать, что самопроизвольный адиабатический переход системы во все эти со­стояния невозможен, т. е. система находится в устойчивом термодинамическом равновесии. Действительно, если бы такой переход был возможен, то энтропии начального 1 и конечного 2 состояний были бы связаны соотношением . Но это соотношение находится в противоречии с принципом возрастания энтропии, согласно которому при адиабатических переходах должно быть . Таким образом, мы приходим к следующему критерию термодина­мической устойчивости.

Если система адиабатически изолирована и ее энтропия в не­котором равновесном состоянии максимальна, то это состояние являемся термодинамически устойчивым. Это значит, что система, оставаясь адиабатически изолированной, не может самопроизвольно перейти ни в какое другое состояние.

В приложениях термодинамики к конкретным вопросам часто бывает удобно вместо адиабатической изоляции системы накладывать на ее поведение другие ограничения. Тогда критерии термодинамической устойчивости изменятся. Особенно удобны следующие критерии.

Критерий устойчивости для системы с постоянными объемом и энтропией.

Принимая во внимание соотношение (4) и первое начало термодинамики, можно написать:

(41)

При постоянстве энтропии и объема это дает

(42)

т.е. в системе могут самопроизвольно происходить лишь процессы с уменьшением внутренней энергии. Следовательно, устойчивым является состояние при минимуме внутренней энергии.

Критерий устойчивости для системы с постоянными давлением и энтропией. В этом случае условие (41) имеет вид

(43)

т.е. в системе могут самопроизвольно происходить лишь процессы с уменьшением энтальпии Следовательно, устойчивым является состояние при минимуме энтальпии.

Критерий устойчивости для системы с постоянными объемом и температурой. При и неравенство (41) записывается в виде

(44)

т.е. в системе могут самопроизвольно происходить лишь процессы с уменьшением свободной энергии Следовательно, устойчивым является лишь состояние при минимуме свободной энергии.

Характеристики

Тип файла
Документ
Размер
392,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее