referat p-n (732079), страница 2
Текст из файла (страница 2)
Равновесие между р- и п-областями является подвижным. Некоторому количеству основных носителей удается преодолеть потенциальный барьер, вследствие чего через переход течет небольшой ток Iосн.
Этот ток компенсируется обусловленным неосновными носителями встречным током Iнеосн. Неосновных носителей очень мало, но они легко проникают через границу областей, «скатываясь» с потенциального барьера. Величина Iнeocн определяется числом рождающихся ежесекундно неосновных носителей и от высоты потенциального барьера почти не зависит. Величина Iосн, напротив, сильно зависит от высоты барьера. Равновесие устанавливается как раз при такой высоте потенциального барьера, при которой оба тока Iосн и Iнеосн компенсируют друг друга. Подадим .на кристалл внешнее напряжение такого направления, чтобы «+» был подключен к р-области, а «—» был подключен к n-области) (такое напряжение называется прямым). Это приведет к возрастанию потенциала (т.е. увеличению Wрд и уменьшению Wpэ) р-области и понижению потенциала (т.е. уменьшению Wpд и увеличению Wpэ) n-области. В результате высота потенциального барьера уменьшится и ток Iосн возрастет. Ток же Iнеосн останется практически без изменений (он, как отмечалось, от высоты барьера почти не зависит). Следовательно, результирующий ток станет отличен от нуля. Понижение потенциального барьера пропорционально приложенному напряжению (оно равно eU). При уменьшении высоты барьера ток основных носителей, а следовательно и результирующий ток, быстро нарастает. Таким образом, в направлении от p-области к n-области р — n-переход пропускает ток, сила которого быстро нарастает при увеличении приложенного напряжения. Это направление называется прямым (или пропускным, или проходным).
Возникающее в кристалле при прямом напряжении электрическое поле «поджимает» основные носители к границе между областями, вследствие чего ширина переходного слоя, обедненного носителями, сокращается. Соответственно уменьшается и сопротивление перехода, причем тем сильнее, чем больше напряжение. Таким образом, вольт-амперная характеристика в пропускной области не является прямой (рис. 11).
Теперь приложим к кристаллу напряжение такого направления
чтобы «+»'был подключен к n-области, а «—» был подключен к р-области (такое напряжение называется обратным). Обратное напряжение приводит к повышению потенциального барьера и соответственному уменьшению тока основных носителей Iосн. Возникающий при этом результирующий ток (называемый обратным) довольно быстро достигает насыщения (т. е. перестает зависеть от U, рис. 11) и становится равным iнеосн. Таким образом, в направлении от n-области к р-области (которое называется обратным или запорным) р — n-переход пропускает слабый ток, целиком обусловленный неосновными носителями. Лишь при очень большом обратном напряжении сила-тока начинает резко возрастать, что обусловлено электрическим пробоем перехода. Каждый р—n-переход характеризуется своим предельным значением обратного напряжения, которое он способен выдержать без разрушения. Поле, возникающее в кристалле при наложении обратного напряжения; «оттягивает» основные носители от границы между областями, что приводит к возрастаниюширины переходного слоя,обедненного носителями. Соответственно увеличивается и сопротивление перехода. Следовательно, р—n-переход обладает в обратном направлении гораздо большим сопротивлением, чем в прямом.
Из сказанного вытекает, что р — n-переход может быть
использован для выпрямления переменного тока. На рис. 12 показан график тока, текущего через переход, в том случае, если приложенное напряжение изменяется по гармоническому закону. В этом случае ширина слоя, обедненного носителями, и сопротивление перехода пульсируют, изменяясь в такт с изменениями напряжения.
Германиевые выпрямители могут выдерживать обратное напряжение до 1000 в. При напряжении в 1 в плотность тока в прямом направлении достигает 100 а/см2, в обратном—не больше нескольких микроампер. Еще более высокое обратное напряжение допускают кремниевые выпрямители. Они также выдерживают более высокую рабочую температуру (до 180° С вместо примерно 100° С для германия). Гораздо худшими параметрами обладают широко распространенные селеновые выпрямители. Допустимое обратное напряжение составляет для них не более 50 в, наибольшая плотность прямого тока до 50 ма/см2. Соединяя последовательно N выпрямительных элементов (селеновых шайб), можно получить выпрямитель, выдерживающий N-кратное обратное напряжение. Полупроводниковый триод, или транзистор, представляет собой кристалл с двумя р—n-переходами; В зависимости от порядка, в котором чередуются области с разными типами проводимости, различают р—п—р- и n—p—га-транзисторы). Средняя часть транзистора
(обладающая в зависимости от типа транзистора n- или р-проводимостью) называется его базой. Прилегающие к базе с обеих сторон области с иным, чем у нее, типом проводимости образуют эмиттер и коллeктор.
Рассмотрим кратко принцип работы транзистора типа
р—n—р (рис. 13). Для его изготовления берут пластинку из очень чистого германия с электронной проводимостью и с обеих сторон вплавляют в нее индий. Концентрация носителей в эмиттере и коллекторе, т. е. в дырочной области, должна быть
больше, чем концентрация носителей в пределах базы, т. е. в электронной области. На рис. 14, а даны кривые потенциальной энергии — электронов (сплошная линия) и дырок (пунктирная линия).
На переход эмиттер — база подается напряжение в проходном направлении (рис. 13), а на пеpеход база — коллектор
подается большее напряжение в запорном направлении. Это приводит к понижению потенциального барьера на первом переходе и повышению барьера на втором (рис. 14,6). Протекание тока в цепи эмиттера сопровождается проникновением дырок в область базы (встречный поток электронов мал вследствие того, что их концентрация невелика). Проникнут в базу, дырки диффундируют по направлению к коллектору. Если толщина базы небольшая, почти все дырки, не успев рекомбинировать, будут достигать коллектора. В нем они подхватываются полем и увеличивают ток, текущий в запорном направлении в цепи коллектора. Всякое изменение тока в цепи эмиттера приводит к изменению количества дырок, проникающих в коллектор и, следовательно, к почти такому же изменению тока в цепи коллектора.. Очевидно, что изменение тока в цепи коллектора не превосходит изменения тока в цепи эмиттера, так что, казалось бы, описанное устройство бесполезно. Однако надо учесть, что переход имеет в запорном направлении гораздо большее сопротивление, чем в проходном. Поэтому при одинаковых изменениях токов изменения напряжения в цепи коллектора будут во много раз больше, чем в цепи эмиттера. Следовательно, транзистор усиливает напряжения и мощности. Снимаемая с прибора повышенная мощность появляется за счет источника тока, включенного в цепь
Германиевые транзисторы дают усиление (по напряжению и по мощности), достигающее 10000.















