149641 (731990), страница 3

Файл №731990 149641 (Нелинейная оптика) 3 страница149641 (731990) страница 32016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

До недавнего времени в спектроскопии комбинационного рассеяния применялись интенсивные источники некогерентного излучения (например, ртутные лампы). В последнее время когерентные лазерные источники вытеснили ртутную лампу.

Характерные частоты колебаний атомных групп в молекулах ([2] с.370)

Частота, см-1

Колеблющаяся
атомная группа

Тип соединения

445-550

S-S

Алифатические дисульфиды

510-594

C-Br

Алифатические соединения

750-850

Парапроизводные бензола

884-899

Циклопентан и монопроизводные

939-1005

Циклобутан и производные

990-1050

Бензол и одно- и трехзамещенные бензолы

»1340

Ароматические соединения

»1380

Нафталин и производные

»1630

C=N

Ароматические соединения

1654-1670

C=N

Алифатические соединения

1974-2260

C¦C

Алифатические соединения

2150-2245

C¦N

Нитрилы

4160

H-H

H2

Характерно, что частоты мало меняются от соединения к соединению.

Если среду, способную к комбинационному рассеянию, поместить в оптический резонатор, то при наличии поля лазерной накачки усиление стоксовой компоненты способно скомпенсировать потери, и на частоте wc возникает генерация. Генерация при ВКР представляет собой практический способ преобразования излучения импульсных лазеров (например, лазера на неодимовом стекле) в когерентное излучение, сдвинутое по частоте на колебательную частоту вещества.

Эксперименты по исследованию влияния интенсивности лазерной накачки на интенсивность стоксовой компоненты показали, что по достижении некоторой критической интенсивности накачки интенсивность стоксовой компоненты резко возрастает, а затем идет насыщение (см. рис.4).


Рис.4. Зависимость интенсивности генерации стоксовой компоненты от интенсивности накачки лазера

Макроскопическая теория ВКР. Стоксово рассеяние.

В экспериментах по ВКР было обнаружено, что выходное излучение содержит несколько стоксовых (wл - wu ), (wл - 2wu ), ... и антистоксовых (wл + wu ), (wл + 2wu ), ... компонент. Из рис. 3 видно, что процесс излучения стоксовой компоненты приводит к увеличению населенности колебательного уровня (u=1), поэтому становится возможным излучение на антистоксовой частоте. Стоксова (wc) и антистоксова (wас) компоненты могут, в свою очередь, служить исходным излучением, генерирующим частоты wс - wu = wл - 2wu и wас + wu = wл + 2wu. Аналогично можно объяснить появление комбинационных частот более высоких порядков.

Чтобы пояснить основные особенности возникновения ВКР, получим условие усиления или генерации на первой стоксовой частоте wс = wл - wu, т.к. первоначально может усиливаться только эта компонента. Для возникновения других спектральных компонент требуется либо наличие молекул в возбужденном состоянии, либо присутствие стоксовой компоненты первого порядка.

Для анализа используется такая модель: рассеивающая среда состоит из N независимых осцилляторов (т.е. ансамбль осцилляторов не поддерживает волновое движение с отличной от нуля групповой скоростью), каждый характеризуется своим положением z (одномерный случай ¶/¶x=¶/¶y=0) и нормальной колебательной координатой X(z,t). Уравнение движения для осциллятора имеет вид

(1)

где Г - постоянная затухания, выбранная так, что наблюдаемая ширина линии спонтанного комбинационного рассеяния равна Dn=G/2p; wu - резонансная частота колебаний молекулы в отсутствие затухания; m - масса; F(z,t) - возбуждающая сила.

Возбуждающую силу можно получить, рассматривая электромагнитную энергию в молекулярной среде. Плотность энергии, запасенной в электрическом поле E=1/2eE2 при использовании равенства

e = e0 (1 + Na) = e0 {1 + N [a0 + (¶a/¶X)0 X]}

(2)

может быть записана в виде

E=1/2 e0 {1 + N [a0 + (¶a/¶X)0 X]} E2

(3)

Сила, действующая на единицу объема поляризуемой среды, равна ¶e/¶X, откуда делением на N получаем силу, действующую на один осциллятор.

F(z,t)=1/2 e0 (¶a/¶X)0 2

(4)

означает усреднение за несколько колебаний, предпринимаемое потому, что молекула неспособна реагировать на эти колебания. Из (4) видно, что при отличной от нуля дифференциальной поляризуемости (¶a/¶X)0 колебания молекул могут возбуждаться электрическим полем.

Дальнейшая задача - показать, как колебания молекул воздействуют на электромагнитное поле. В соответствии с (2) колебания молекул с частотой wu вызывают модуляцию диэлектрической проницаемости с той же частотой. Это приводит к фазовой модуляции поля излучения (появляются боковые составляющие, смещенные на wu друг от друга). Т.е. происходит обмен энергией между электромагнитными полями различных частот., разделенных интервалами, кратными wu.

Полное поле является суммой лазерного (w2) и стоксова (w1) полей:

E(z,t) = 1/2 E1(z) exp iw1t + 1/2 E2(z) exp iw2t + к.с.

(5)

2 = 1/4 E2(z) E1*(z) exp i(w2-w1)t + к.с.

(6)

(6) ® (4) ® (1)

(7)

Здесь использованы соотношения ¶/¶t=iw и

X(z,t) = 1/2 X(z) exp iwt + к.с.

(8)

Из (7) следует, что на частоте w=w2-w1 молекулярные колебания имеют комплексную амплитуду

(9)

Поляризация, наведенная полем частоты w1, имеет вид

P = e0 N a(z,t) E(z,t) = e0 N [a0 + (¶a/¶X)0 X(z,t)] E(z,t).

(10)

Используя (5), (9) и (10) для нелинейная поляризации (второй член поляризации, пропорциональный X E) получаем:

(11)

Примечание:

Осуществив умножение в формуле (11) (см. тж. примечание), получим составляющие поляризации, осциллирующие с частотами w1, w2, 2w1-w2 и 2w2-w1. Рассмотрим сначала составляющую нелинейной поляризации, имеющую частоту w1:


Pнелw1(z,t) = 1/2 Pнелw1(z) exp iw1t + к.с.,

(12)

где

(13)

Коэффициент пропорциональности между полем и поляризацией представляет собой восприимчивость. Нелинейная комбинационная восприимчивость подобно линейной восприимчивости имеет лоренцеву форму линии.

Форма линии стоксова рассеяния имеет вид

(13a)

Антистоксово рассеяние

Антистоксово излучение на частоте w3 = w2 + wu является результатом комбинационного рассеяния света молекулой, находящейся в возбужденном колебательном состоянии (u=1). При классическом подходе к задаче мы должны найти поляризацию на w3, наведенную электрическим полем:

E(z,t) = 1/2 [E1(z) exp iw1t + E2(z) exp iw2t + E3(z) exp iw3t + к.с.],

(14)

где w3 - w2 = w2 - w1.

В выражении для поляризации по аналогии с (11) найдем член, соответствующий возбуждению молекулярных колебаний силой, пропорциональной E3 E2*. Из (13) заменой частот и индексов у E получим

(15)

Важно, что мнимые части (13) и (15) имеют разные знаки, поэтому

антистоксова волна, распространяясь в среде, активной в комбинационном отношении, в присутствии излучения лазера (w2), но в отсутствии стоксова излучения (w1 = w2 - wu) будет затухать.

Существует, однако, еще одна компонента поляризации на частоте w2:

Pнелw3(z) ~ E2 E2 E*1 exp [i(2w2-w1)t]

(16)

Она не содержит E3 и может рассматриваться как верхняя боковая частота [w2 + (w2 - w1)] в спектре модулированных колебаний диэлектрической проницаемости с несущей w2 и модулирующей w2 - w1 частотами. Эта компонента является источником излучения с частотой w3.

Если дополнить (16) пространственной зависимостью поляризации, то

Pнелw3(z) ~ E2 E2 E*1 exp [-i(2k2-k1)r]

(17)

Этому члену соответствует поле E3exp(-ik3r), причем

k3 = 2 k2 - k1

(18)

Следовательно, антистоксова волна может излучаться только в направлениях, удовлетворяющих условию (18). См. рис.5. А так как |ki| = wi ni / c, то антистоксова компонента распространяется в направлениях, составляющих коническую поверхность с половинным углом b при вершине и осью лазерного луча.

Характеристики

Тип файла
Документ
Размер
296,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее