Chast2b (731851), страница 4

Файл №731851 Chast2b (Концепция современного естествознания) 4 страницаChast2b (731851) страница 42016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Для того, чтобы амплитуда колебаний не уменьшалась под вследствие потерь энергии, в систему необходимо добавлять энергию извне. Добавляемая энергия должна компенсировать потери. Существуют разные способы передачи энергии в систему. Чаще всего в технике инициируют так называемые вынужденные колебания. Вынужденные колебания возникают под действием внешней периодической силы с частотой W. Эта частота может не совпадать с частотой собственных (w) или затухающих (w¢) колебаний. Колебания начинаются сразу на двух частотах: вынужденные на частоте W и затухающие на частоте w¢. Затухающие колебания быстро затухают, и остаются только незатухающие вынужденные колебания. Амплитуда вынужденных колебаний является функцией частоты вынуждающей силы W. Эта зависимость приведена на рис.18.2 для систем с большим (1) и малым трением (2). Если частота вынуждающих колебаний - W близка к частоте собственных колебаний системы - w, то наступает так называемое явление резонанса. При резонансе амплитуда колебаний системы максимальна.

Если потери, вызванные силами трения, достаточно малы, то амплитуда колебаний может стать такой большой, что система может даже разрушится. Известен случай разрушения моста под действием ветра, вызвавшего сильные колебания. В авиации известен термин, называемый флаттером, когда амплитуда колебаний деталей самолетов становится настолько большой, что самолеты разрушаются в воздухе.

Существуют и другие способы передачи энергии системе для осуществления периодических незатухающих колебаний. В простейшем случае, который имеет место в механических часах, энергия механической пружины периодически с частотой 1 Гц подводится к маятнику.

Интересен случай возбуждения незатухающих колебаний в системе, с помощью энергии, подводимой непрерывно. Примером возникновения таких колебаний - автоколебаний могут служить трубы органов и других музыкальных инструмент иов. Поток воздуха проходит с постоянной скоростью через органную трубу и передает ей энергию, за счет которой труба издает звуки определенной тональности. Как можно в этом случае объяснить процесс возникновения периодических колебаний? Автоколебания возможны только тогда, когда энергия, передаваемая системе нелинейно зависит от какого-то параметра, например от скорости системы. В разные моменты времени скорость стенок трубы, с которой соприкасается поток воздуха, различна. И поток воздуха с разной силой «трется» о стенки, т.е. передает ей разную энергию. Колебания стенок трубы описываются обычными уравнениями колебаний (18.1-18.3) Следовательно, энергия, передаваемая потоком воздуха органной трубе также будет меняться по закону гармонического колебания. В конечном счете процесс передачи энергии от потока воздуха к стенкам трубы также будет носить периодический характер. Период этого процесса определяется собственными частотами колебаний трубы. Имеет место явление резонанса, при котором амплитуда колебаний становится очень большой при сравнительно небольших затратах энергии. Именно этим явлением объясняется «флаттер» и разрушение моста сильным потоком воздуха.

18.2 Распространение колебаний, звуковые и электромагнитные волны.

Упругой называется среда, которая может сопротивляться деформации. Возьмем, например, металлическую линейку. Закрепим один ее конец, а на второй подействуем с некоторой силой. Для того, чтобы согнуть линейку требуется прикладывать силу, которая уравновешивается силами, действующими со стороны соседних участков линейки. Через некоторое время после прекращения действия внешней силы линейка разогнется и перейдет в прямое состояние. Это пример действия упругих сил в твердых телах. В газах также существуют упругие силы. Возьмем поршень в цилиндре и попытаемся сжать газ в цилиндре. Упругие силы, возникающие из-за избыточного давления газа, будут стремиться вернуть поршень в положение равновесия. Жидкости тоже являются упругими средами, в них тоже возникают упругие силы.

Отличие упругих сил в твердых телах от упругих сил в жидкостях и газах, заключаются в том, что, в твердых телах упругие силы действуют во всех направлениях, независимо от того, куда мы стремимся приложить силу. В газах упругие силы возникают только тогда когда мы стремимся изменить первоначальный объем газа. Другими словами, твердое тело сопротивляется изменению своего объема и своей формы, а жидкости и газы - только изменению объема.

Если заставить колебаться участок упругой среды, то под действием упругих сил эти колебания будут передаваться соседним участкам среды. Процесс распространения колебаний в упругой среде называют волнами. В общем случае волна - это процесс распространения колебаний какого-то параметра (смещения атомов в теле, давления в газах, напряженности электрического поля или еще чего-нибудь) в пространстве. В жидкостях и газах колебания могут быть направлены только вдоль направления распространения волны. Такие волны называются продольными.

В твердых телах колебания могут совершатся как вдоль направления распространения волны, так и поперек. Волны, у которых колебание совершается перпендикулярно направлению распространения называются поперечными. Примером продольных волн в газах является звук. Примером поперечных волн являются электромагнитные волны, у которых колеблются напряженности электрических и магнитных полей.

Рассмотрим процесс возникновения волн и найдем уравнение, описывающее волну. В качестве модели возьмем длинную натянутую струну или веревку. В исходном состоянии она неподвижна. В начальный момент времени t0 начнем колебать в поперечном направлении незакрепленный конец веревки. Пусть некоторую точку смещают из положения равновесия и отпускают. Точка начинает колебаться по гармоническому закону (рис.18.3). Через некоторое время точка отойдет от положения максимального отклонения и станет перемещаться к положению равновесия. Через четверть периода колебаний точка достигнет его, минует и станет двигаться дальше к максимальному отклонению xmax=А, равному амплитуде. Спустя некоторое время все тоже самое случится с соседней точкой. С течением времени колебание может распространиться на всю веревку. Каждая точка веревки (если пренебречь затуханием, т.е. силами сопротивления) будет колебаться по закону . Фаза колебания каждого участка веревки будет своя. По веревке будет распространяться колебание, т.е. возникнет так называемая бегущая волна.

Введем параметры, характеризующие волну. Минимальное расстояние между двумя участками веревки, колеблющимися в одинаковой фазе назовем длиной волны l, см.рис.18.3. Участки веревки с постоянной фазой колебания перемещаются слева направо. Скорость перемещения постоянной фазы колебания называют фазовой скоростью - u. За время, равное одному периоду колебаний - T, волна поробегает расстояние, равное ее длине - l.

.

Поверхность, все точки которой колеблются в одинаковой фазе, называется волновой поверхностью. Геометрическое место точек, которых достигло возмущение от источника называется волновым фронтом. Эти понятия очень похожи, но не тождественны. Волновой фронт перемещается со скоростью волны, а волновые поверхности неподвижны лишь в один момент времени они совпадают друг с другом. Если, например, колонна машин едет по дороге, то первую машину можно уподобить волновому фронту, а встречающиеся на пути километровые столбы - волновым поверхностям. Пусть волна распространяется из точки О вдоль оси (oz). Найдем фазу волны в произвольной точке z (см.рис.18.4).

Рис.18.3 Рис.18.4

Колебание волны в точке z можно представить в виде: , где t - время запаздывания колебаний в точке z по сравнению с колебаниями в точке О. За это время волновой фронт проходит расстояние от начала отсчета до точки z. Это время равно . С учутом имеем:

Здесь k - волновое число, которое показывает сколько длин волн l укладывается на отрезке, длиной 2p.

Полученное выражение называется уравнением бегущей волны. Оно определяет колебание волны в каждой точке пространства, являясь функцией координаты z и времени t.

Часто, кроме круговой частоты колебаний w=2p/T используют циклическую частоту n=1/T. Частота измеряется в Герцах, 1 Гц - это 1 колебание в секунду. В общем случае вместо смещения точки среды из положения равновесия можно ввести любой “колеблющийся” параметр. Для звуковых волн таким параметром является давление газа в данной точке пространства. Звуковые волны - продольные волны и физически сводятся к процессу распространения в газе колебаний давления. Эти колебания обычно создают путем колебаний мембраны перпендикулярно ее плоскости. Возникающие перепады давления и представляют собой звуковую волну. Область частот, которые слышит человеческое ухо лежит в диапазоне 20-20000 Гц.

Другим чрезвычайно важным видом волн являются электромагнитные волны. Электромагнитные волны могут возникать и распространятся в пустом пространстве, т.е. в вакууме. Из уравнений Максвелла следует, что переменное магнитное поле создает вокруг себя в пространстве переменное электрическое поле. В свою очередь, переменное электрическое поле создает вокруг себя в пространстве переменное магнитное поле. Этот процесс приводит к появлению в пространстве некоторой волны - электромагнитной волны. Эта волна является поперечной.

Напряженности электрического и магнитного полей волны перпендикулярны друг другу и направлению распространения волны. На рис.18.5 показаны напряженности электрического и магнитного полей в бегущей волне.

Рис.18.5

Особенностью электромагнитных волн является то, что для их распространения не требуется никакой среды. Переменные электромагнитные поля могут распространяться в вакууме.

Для количественного описания волн вводят два понятия: интенсивность волны и объемную плотность энергии волны. Интенсивность волны - это средняя по времени энергия, переносимая волнами через единичную площадь, параллельную волновому фронту, за единицу времени. Объемная плотность энергии - это энергия волн, приходящаяся на единицу объема. Волна - это процесс распространения колебаний в пространстве (в упругой среде , как это имеет место для звуковых волн, или в вакууме, как это имеет место для электромагнитных волн). Энергия колебаний определяется амплитудой и частотой. Она пропорциональна квадрату амплитуды колебаний. В системе СИ интенсивность волны выражается в Вт/м2.

Без вывода приведем выражения для интенсивности и скорости звуковой и электромагнитной волн. Для звуковой волны:

где А - амплитуда колебаний среды, w - частота, u, u//, u^ - скорость волны, продольной и поперечной, r - плотность среды, в которой распространяется звуковая волна, E - коффициент Юнга, G - коэффициент сдвига.

Распространение звука в упругой среде связано с объемной деформацией. Поэтому давление в каждой точке среды непрерывно колеблется с частотой w вокруг некоторого среднего значения. Давление, вызванное звуковой деформацией среды называется звуковым давлением.

Наше ухо воспринимает звуковые давления неодинаково на разных частотах. Область частот ,которые воспринимает ухо лежит в диапазоне 20 - 20000 Гц. Наибольшей чувствительностью ухо обладает в диапазоне частот около 1000 Гц. На этих частотах ухо способно воспринимать звуки, звуковое давление в которых отличается на 7 порядков.

Для интенсивности электромагнитной волны справедливо:

, где Eо и Hо амплитуды напряженности электрического и магнитного полей, e и m диэлектрическая и магнитная проницаемости среды, eо и mо диэлектрическая и магнитная проницаемости вакуума - постоянные, введенные в системе СИ. Скорость распространения электромагнитных волн в среде равна

Характеристики

Тип файла
Документ
Размер
206,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее