149520 (731799), страница 2

Файл №731799 149520 (Звуковые волны) 2 страница149520 (731799) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Величина, равная отношению отражённого потока звуковой энергии к падающему потоку звуковой энергии, называется коэффициентом отражения. Величина, равная отношению проходя­щего потока звуковой энергии к падающему потоку звуковой энергии, называется коэффициентом пропускания.

Для звуковых волн выполняются законы отражения и прелом­ления, аналогичные законам отражения и преломления света.

Свойства звука.

Ощущение звука вызывается звуковыми волнами, достигающими органа слуха - уха. Важнейшая часть этого органа - барабанная перепонка. Пришедшая к ней звуковая волна вызывает вынужден­ные колебания барабанной перепонки с частотой колебаний в волне. Они воспринимаются мозгом как звук.

Звуки бывают разные. Мы легко различаем свист и дробь ба­рабана, мужской голос (бас) от женского (сопрано).

Об одних звуках говорят, что они низкого тона, другие мы называем звуками высокого тона. Ухо их легко различает. Звук, создаваемый большим барабаном, это звук низкого тона, свист - звук высокого тона. Простые измерения (развертка колебаний) показывают, что звуки низких тонов - это колебания малой частоты в звуковой волне. Звуку высокого тона соответствует большая частота колебаний. Частота колебаний в звуковой волне определяет тон звука.

Существуют особые источники звука, испускающие единствен­ную частоту, так называемый чистый тон. Это камертоны различ­ных размеров - простые устройства, представляющие собой изогнутые металлические стержни на ножках. Чем больше размеры камертона, тем ниже звук, который он испускает при ударе по нему.

Если взять несколько камертонов разного размера, то не представит труда расположить их на слух в порядке возрастания высоты звука. Тем самым они окажутся расположенными и по размеру: самый большой камертон даёт низкий звук, а маленький - наиболее высокий.

Звуки даже одного тона могут быть разной громкости. Гром­кость звука связана с энергией колебаний в источнике и в волне. Энергия же колебаний определяется амплитудой колеба­ний. Громкость, следовательно, зависит от амплитуды колеба­ний. Но связь между громкостью звука и амплитудой колебаний не простая.

Самый слабый ещё слышимый звук, дошедший до барабанной перепонки, приносит в 1 секунду энергию, равную примерно 10-16 Дж, а самый громкий звук (звук реактивного ракетного двигателя в нескольких метрах от него) - около 10-4 Дж. Следовательно, по мощности самый громкий звук примерно в тысячу миллиардов раз превосходит самый слабый.

Интенсивности звука при слуховом восприятии соответствует ощущение громкости звука. При определенной минимальной интен­сивности человеческое ухо не воспринимает звука. Эта мини­мальная интенсивность называется порогом слышимости. Порог слышимости имеет различные значения для различных частот. При больших интенсивностях ухо испытывает болевое ощущение. Наибольшая интенсивность при болевом восприятии звука называ­ется порогом болевого ощущения.

Уровень интенсивности звука определяется в децибелах (дБ). Например, громкость звука, шороха листьев оценивается в 10 дБ, шёпота - 20 дБ, уличного шума - 70 дБ. Шум громкостью 130 дБ ощущается кожей и вызывает ощущение боли.

Количество децибел равно десятичному логарифму отношения интенсивностей, умноженному на 10, т.е. 10 lg.(I/I0).

Обычно в акустике за I0 принимается интенсивность равная 1 пДж(м с), приблизительно равная интенсивности на пороге слышимости при 1000 Гц.

Простейшие наблюдения показывают, что громкость тона ка­кой-либо данной высоты определяется амплитудой колебаний. Звук камертона после удара по нему постепенно затихает. Это происходит вместе с затуханием колебаний, т.е. с уменьшением их амплитуды. Ударив камертон сильнее, т.е. сообщив колеба­ниям большую амплитуду, мы услышим более громкий звук, чем при слабом ударе. То же можно наблюдать и со струной, и вообще со всяким другим источником звука.

К таким же заключениям можно прийти, пользуясь не камер­тонами, а упрощённой сиреной - вращающимся диском с отвер­стиями, через которые продувается струя воздуха. Повышая напор струи воздуха, мы усиливаем колебания плотности воздуха позади отверстий. При этом звук, сохраняя одну и ту же вы­соту, делается громче. Ускоряя вращение диска, мы уменьшаем период прерываний воздушной струи. Вместе с тем звук, не меняясь по громкости, повышается. Можно также сделать в диске два или более рядов отверстий с разным количеством отверстий в каждом ряду. Продувание воздуха через каждый из рядов даёт тем более высокий звук, чем больше отверстий в этом ряду, т.е. чем короче период прерываний.

Но, взяв в качестве источника звука сирену, можно полу­чить хотя и периодическое, но уже негармоническое колебание: плотность воздуха в прерывистой струе меняется резкими толч­ками. На ряду с этим и звук сирены, хотя и является музыкаль­ным, но совсем не похож на тон камертона. Можно подобрать высоту звука сирены такой же, как и у какого-либо из камерто­нов. При этом и громкость звука можно сделать одинаковой. Тем не менее легко можно отличить звук камертона от звука сирены.

Таким образом, если колебание не является гармоническим, то на слух оно имеет ещё одно качество, кроме высоты и гром­кости, а именно - специфический оттенок, называемый тембром. По различному тембру мы легко распознаём звук голоса, свист, звучание струны рояля, скрипичной струны, звук флейты, гар­мони и т.д., хотя все эти звуки имели бы одну и ту же высоту и громкость. По тембру мы можем узнать голоса разных людей.

Исследование вопроса, с чем связан тембр звука, показало, что для нашего уха существенны только частоты и амплитуды тонов, входящих в состав звука, т.е. тембр звука определя­ется его гармоническим спектром. Сдвиги отдельных тонов по времени, другими словами, изменения фаз тонов, никак не воспринимаются на слух, хотя могут очень сильно менять форму результирующего колебания. Таким образом, один и тот же звук может восприниматься при очень различных формах колебания. Важно только, чтобы сохранялся спектр, т.е. частоты и ампли­туды составляющих тонов.

Скорость распространения звука.

В том, что распространение звуковых волн происходит не мгновенно, можно увидеть из простейших наблюдений. Если в дали происходит гроза, выстрел, взрыв, свисток паровоза, удар топором и т.п., то сначала все эти явления видно, а только потом, спустя некоторое время, слышен звук.

Как и всякая волна, звуковая волна характеризуется скоростью распространения колебаний в ней. Скорость распро­странения фазы волны в упругой среде жидкости или газа зави­сит от сжимаемости и плотности этой среды. В жидкостях и газах звук распространяется с постоянным давлением и его скорость пропорциональна корню квадратному из абсолютной температуры газа T. В сухом воздухе, содержащим 0,03 угле­рода, при температуре 0 0C скорость звука равна 331,5 м/с, а с повышением температуры увеличивается:

____

 = T ,

где 1/273 - коэффициент расширения газа. В воде звук распространяется примерно в 4,25 раза быстрее, чем в воз­духе, а в твёрдых телах - ещё быстрее (около 5 103 - 6 103 м/с).

С длиной волны и частотой колебаний скорость звуко­вой волны связана формулой:

.

Скорость звука различна в разных средах. Например в водо­роде скорость распространения звуковых волн любой длины равна 1284 м/c, в резине - 1800 м/с, а в железе - 5850 м/c.

Музыкальная акустика.

Реальный звук является наложением гармонических колебаний с набором частот, который определяет акустический спектр звуковой волны. Различают три вида звуковых колебаний: музы­кальные звуки, звуковые удары и шумы. Периодические колебания определённой частоты вызывают простой музыкальный тон. Слож­ные музыкальные звуки - это сочетания отдельных тонов. Тон, соответствующий наименьшей частоте сложного музыкального звука, называют основным тоном, а остальные тоны - оберто­нами. Если частота обертона кратна частоте основного тона, то обертон называют гармоническим. При этом основной тон с минимальной частотой 0 называют первой гармоникой, обер­тон, с частотой  - второй гармоникой и т.д.

Относительная интенсивность, звуковой волны а так же ха­рактер нарастания и спада их амплитуд во время затухания, определяют окраску (или тембр) звука. Различные музыкальные инструменты (рояль, скрипка флейта и т.п.) отличаются тем­бром издаваемых этими инструментами звуков. Совокупность звуков разной высоты которыми пользуются в музыке, составляет музыкальный строй. Относительный музыкальный строй состоит из звуков, находящихся в определённых соотношениях. Если звуки музыкального строя заданы высотой исходного тона, с которого начинается настройка инструментов, то такой строй называют абсолютным. Исходный (стандартный) тон в европейском абсолют­ном музыкальном строе равен 440 Гц (звук "ля" первой октавы). Относительное различие в высоте двух тонов, обусловленное соотношением между частотами этих тонов, называют интервалом. Соотношение частот 2 : 1 определяет октаву, 5 : 4 - большую терцию, 4 : 3 - кварту, 3 : 2 - квинту.

Если длина струны гитары равна L, то возникшая волна должна пройти путь 2L, чтобы вернуться в исходное положение, имея исходное направление движения и исходную форму после двух отражений от обоих концов. Если - скорость волны, то расстояние 2L волна будет пробегать раз в секунду, причём





2L

Частота это высота тона струны. Если прижать пальцем струну к грифу гитары, положив палец на лад, который ускорит свободную часть струны в 2 раза, то и высота тона удвоится. Нота повысится на октаву, что соответствует удвоению частоты.

Отношение высот полутонов равно корню двенадцатой степени из двух. Этим и определяется расположение ладов на грифе гитары. Отношение расстояний L1 и L2 от подставки на деке до любых двух соседних тонов на грифе гитары равно

L2 12 _

 =  = 0,05946

L1

В принятой европейской музыкальной практике октава де­лится на 12 равных интервалов, которые составляют равномерно темперированный строй. Отношение частот последовательных полутонов

12___

n : n+1 =  : 1

Кроме темперированного строя различают два точных строя - пифагорейский и чистый, в основе которых лежат интервалы, частотные коэффициенты которых представляют собой отношения первых соседних чисел натурального ряда. Пифагорейский строй основан на октаве и чистой квинте с частотным коэффициентом 3 : 2, а чистый строй - на октаве, квинте и большой терции с частотным коэффициентом 5 : 4. Пифагорейский строй более выразительно передаёт мелодию, а чистый лучше соответствует аккордовой музыке. Для исполнения сложной музыки используют компромиссно темперированные строи и равномерно-темперирован­ный 12-ступенчатый музыкальный строй.

Музыка других, неевропейских народов отличается другими интервальными соотношениями и другим числом звуков в октаве.

Резонанс в акустике.

Звуковые колебания, приносимые звуковой волной, могут служить вынуждающей, периодически изменяющейся силой для колебательных систем и вызывать в этих системах явление резонанса, т.е. заставить их звучать. Такой резонанс называ­ется акустическим резонансом. Резонансные явления можно наблюдать на механических колебаниях любой частоты. Т.к. камертон сам по себе даёт очень слабый звук, потому, что площадь поверхности колеблющихся ветвей камертона, соприка­сающихся с воздухом, очень мала и в колебательное движение приходит слишком мало частиц воздуха, то камертон обычно укрепляют на деревянном ящике, подобранном так чтобы частота его собственных колебаний была равна частоте звука, создавае­мого камертоном. Ящики усиливают звук, вследствие резонанса между камертоном и столбом воздуха, заключённого в ящике. Этот ящик с камертоном называется резонатором или резонансным ящиком.

Пример акустического резонанса можно наблюдать в следую­щем опыте. Роль ящиков в этом опыте чисто вспомогательная.

Поставим рядом два одинаковых камертона, обратив отвер­стия ящиков, на которых они укреплены, друг к другу. Ударим один из камертонов и затем приглушим его пальцами. Мы услы­шим, как звучит второй камертон.

Возьмём два разных камертона, т.е. с различной высотой тона, и повторим опыт. Теперь каждый из камертонов не будет откликаться на звук другого камертона.

Этот результат объясняется тем, что колебания одного ка­мертона действуют через воздух с некоторой силой на второй камертон, заставляя его совершать вынужденные колебания. Так как первый камертон совершает гармоническое колебание, то и сила, действующая на второй камертон, будет меняться по закону гармонического колебания с частотой первого камертона. Если частота силы та же, что и собственная сила второго камертона, то второй камертон начинает сильно раскачиваться. Это явление называется акустическим резонансом. Если же частота силы другая, то вынужденные колебания второго камер­тона будут настолько слабыми, что их будет невозможно услы­шать.

Так как камертоны обладают очень небольшим затуханием, то у них резонанс будет очень сильно выражен (острый резонанс). Поэтому уже небольшая разность между частотами камертонов приводит к тому, что один камертон перестаёт откликаться на колебания другого. Достаточно, например, приклеить к ветвям одного из двух камертонов кусочки пластилина или воска, и камертоны уже будут расстроены, резонанса не будет.

Если звук представляет собой ноту, т.е. периодическое колебание, но не является тоном (гармоническим колебанием), то это означает, что он состоит из суммы двух тонов: основ­ного, наиболее низкого и обертонов. На такой звук камертон должен резонировать всякий раз, когда частота камертона совпадает с частотой какой-либо одной из собственных частот колебательной системы. Опыт можно произвести с упрощенной сиреной и камертоном, при этом поставив отверстие резонатора камертона против прерывистой воздушной струи сирены. Если частота камертона равна 300 Гц, то, можно легко убедиться, что он будет откликаться на звук сирены не только при 300 прерываниях в секунду (резонанс на основной тон сирены), но и при 150 прерываниях - резонанс на первый обертон сирены, и при 100 прерываниях - резонанс на второй обертон сирены, и т.д..

Характеристики

Тип файла
Документ
Размер
152,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7029
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее