149503 (731781), страница 3

Файл №731781 149503 (Дефект масс и энергия связи ядер) 3 страница149503 (731781) страница 32016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

где Ai, Zi и Wi – эмпирические постоянные, подбираемые по опытным данным для каждой оболочки.

Грин и Эдварс ввели в формулу масс следующий член, характеризующий влияние оболочек:

(3.1.14)

где αi, αj и Kij – постоянные, полученные из опыта; и – средние значения N и Z в данном интервале между заполненными оболочками.

п.3.2. Новые полуэмпирические формулы с учетом влияния оболочек

Камерон исходил из формулы Бете—Вейцзекера и со­хранил два первых члена формулы (3.1.9). Член, выражающий поверхностную энергию ES (3.1.7), был изменен.

Рис. 3.2.1. Распределение плотности ядерной мате­рии ρ по Камерону в зависимости от расстоя­ния до центра ядра. А—средний радиус ядра; Z половина толщины поверхностного слоя ядра.

П ри рассмотрении рассеяния элек­тронов на ядрах, можно сделать вывод, что распределение плотности ядерной материи в ядре ρn трапециеобразно (рис. 16). За средний радиус ядра т можно принять расстояние от центра до точки, где плотность убывает вдвое (см. рис. 3.2.1). В результате обработки опытов Хофштедтера. Камерон предложил такую формулу для среднего радиуса ядер:

Он считает, что поверхностная энергия ядра пропорциональна квадрату среднего радиуса r2, и вводит поправку, предложен­ную Финбергом, учитывающую симметрию ядра. По Каме­рону, поверхностную энергию можно выразить так:

Ч

етвертый, кулоновский, член формулы (3.1.9) также был исправлен в связи с трапецеидальным распределением плотно­сти ядра. Выражение для кулоновского члена имеет вид

К
роме того. Камерон ввел пятый кулоновский обменный член, характеризующий корреляцию в движении протонов в ядре и малую вероятность сближения протонов. Обменный член

Таким образом, избыток масс, по Камерону, выразится так:

М - А = 8,367А - 0,783Z + αА +β +

+ ЕS + EC + Еα = П (Z, N). (3.2.5)

Подставив экспериментальные значения М—А методом наи­меньших квадратов получили следующие наиболее надежные значения эмпирических коэффициентов (в Мэв):

α=–17,0354; β=– 31,4506; γ=25,8357; φ=44,2355. (3.2.5а)

С помощью этих коэффициентов были вычислены массы. Рас­хождения между вычисленными и экспериментальными массами показаны на рис. 3.2.2. Как можно заметить, в некоторых случаях расхождения достигают 8 Мэв. Особенно велики они у нукли-дов с замкнутыми оболочками.

Камерон ввел дополнительные слагаемые: член, учитываю­щий влияние ядерных оболочек S(Z, N), и член P(Z, N), харак­теризующий парную энергию и учитывающий изменение массы в зависимости от четности N и Z:

М—А=П(Z, N)+S(Z, N)+P(Z, N). (3.2.6)

Рис. 3.2.2. Разности между значениями масс, вычисленными по основной формуле Камерона (3.2.5), и эксперименталь­ными значениями тех же масс в зависимости от массового числа А.

При этом, т.к. теория не может предложить вида членов, который отражал бы некоторые скачкообразные изменения масс, он объединил их в одно выражение

T(Z, N)=S(Z, N)+P(Z. N). (3.2.7)

Далее была выдвинута гипотеза о том, что воздействие чет­ности и оболочек зависит в отдельности от числа протонов Z и от числа нейтронов N, т.е.

T(Z, N)=T(Z) +T(N). (3.2.8)

Это разумное предложение, так как опытные данные подтверж­дают, что протонные оболочки заполняются независимо от ней­тронных и парные энергии для протонов и нейтронов в первом приближении можно считать независимыми.

На основании таблиц масс Вапстра и Хьюзенга Ка­мерон составил таблицы поправок T(Z) и T(N) на четность и заполнение оболочек.

Г. Ф. Драницына, использовав новые измерения масс Бано, Р. А. Демирханова и много­численные новые измерения β- и α-распадов, уточнила значения поправок T(Z) и T(N) в области редких земель от Ва до Pb. Она составила новые таблицы избытков масс (М—А), вычис­ленных по исправленной формуле Камерона в этой области. В таблицах приведены также вычисленные заново энергии β-распадов нуклидов в той же области (56≤Z≤82).

Старые полуэмпирические формулы, охватывающие весь диапазон А, оказываются слишком неточными и дают очень большие расхождения с измеренными массами (порядка 10 Мэв). Создание Камероном таблиц с более чем 300 поправ­ками уменьшило расхождение до 1 Мэв, но расхождения все же в сотни раз превышают погрешности измерений масс и их разностей. Тогда появилась идея разбить всю область нуклидов на подобласти и для каждой из них создать полуэм­пирические формулы ограниченного применения. Такой путь и избрал Леви, который вместо одной формулы с универсаль­ными коэффициентами, пригодными для всех А и Z, пред­ложил формулу для отдельных участков последовательности нуклидов.

Наличие параболической зависимости от Z энергии связи нуклидов изобар требует, чтобы в формуле содержались члены до второй степени включительно. Поэтому Леви предложил такую функцию:

М(А, Z)=α0+ α1 А+ α2 Z+ α3 АZ+ α4 Z2+ α5 А2+δ; (3.2.9)

где α0, α1, α2, α3, α4, α5 – численные коэффициенты, найденные по опытным данным для некоторых интервалов, а δ — член, учитывающий спаривание нуклонов и зависящий от четности N и Z.

Все массы нуклидов разбили на девять подобластей, огра­ниченных ядерными оболочками и подоболочками, и значения всех коэффициентов формулы (3.2.9) вычислили по экспери­ментальным данным для каждой из этих подобластей. Значения найденных коэффициентов та и члена δ, определяемого чет­ностью, приведены в табл. 3.2.1 и 3.2.2. Как видно из таблиц, были учтены не только оболочки из 28, 50, 82 и 126 протонов или ней­тронов, но и подоболочки из 40, 64 и 140 протонов или нейтро­нов.

Таблица 3.2.1

Коэффициенты α в формуле Леви (3.2.9), ма. е. м (16О =16)

Z

N

α0

α1

α2

α3

α4

α5

29–40

29–40

29–40

41–50

51–64

51–64

65–82

>82

>82

29–40

41–50

51–82

51–82

51–82

83–126

83–126

127–140

>140

–155,91

–150,06

+96,27

–135,41

–133,60

–672,82

–83,72

–1746,56

571,90

13,202

7,359

3,780

5,342

6,399

13,059

3,843

18,067

–1,407

–21,956

–10,094

–17,406

–9,712

–13,465

–14,140

–10,680

–10,846

–12,238

–0,9707

–0,7023

–0,5349

–0,5570

–0,4287

–0,4461

–0,4644

–0,4364

–0,3971

1,4544

0,9473

0,8150

0,7432

0,6417

0,6492

0,6464

0,6133

0,5706

0,11565

0,10340

0,10050

0,09758

0,06583

0,05370

0,08739

0,05171

0,08613

Таблица 3.2.2

Член δ в формуле Леви (3.2.9), определенный четностью, ма. е. м. (16О =16)

Z

N

δ при

четном Z и четном N

нечетном Z и нечетном N

нечетном Z и четном N

четном Z и нечетном N

29—40

29—40

29—40

41—50

51—64

51—64

65—82

82

29—40

41—50

51—82

51—82

51—82

83—126

83—126

127—140

0

0

0

0

0

0

0

0

2,65

3,08

2,02

3,08

2,52

2,09

1,61

1,66

1,44

1,84

1,27

1,54

1,12

0,96

0,84

1,01

2,20

1,82

0,75

1,44

1,13

0,73

0,76

0,88

По формуле Леви с этими коэффициентами (см. табл. 3.2.1 и 3.2.2) Риддель вычислил на электронно-счетной машине таблицу масс примерно для 4000 нуклидов. Сравнение 340 экспери­ментальных значений масс с вычисленными по формуле (3.2.9) показало хорошее согласие: в 75% случаев расхождение не пре­вышает ±0,5 ма. е. м., в 86% случаев—не больше ±1,0мa.e.м. и в 95% случаев оно не выходит за пределы ±1,5 ма. е. м. Для энергии β-распадов согласие еще лучше. При этом количе­ство коэффициентов и постоянных членов у Леви всего 81, а у Камерона их более 300.

Поправочные члены T(Z) и T(N) в формуле Леви заменены на отдельных участках между оболочками квадратичной функ­цией от Z или N. В этом нет ничего удивительного, так как между оболочками функции T(Z) и T(N) являются плавными функциями Z и N и не имеют особенностей, не позволяющих представить их на этих участках многочленами второй степени.

Зелдес рассматривает теорию ядерных оболочек и при­меняет новое квантовое число s—так называемое старшин­ство (seniority), введенное Рака. Квантовое число “стар­шинство" не является точным квантовым числом; оно совпадает с числом неспаренных нуклонов в ядре или, иначе, равно числу всех нуклонов в ядре за вычетом числа спаренных нуклонов с нулевым моментом. В основном состоянии во всех четных ядрах s=0; в ядрах с нечетным A s=1 и в нечетных ядрах s=2. Используя квантовое число “старшинство и предельно ко­роткодействующие дельта-силы, Зелдес показал, что формула типа (3.2.9) соответствует теоретическим ожиданиям. Все коэф­фициенты формулы Леви были выражены Зелдесом через различные теоретические параметры ядра. Таким образом, хотя формула Леви появилась как чисто эмпирическая, результаты исследований Зелдеса показали, что ее вполне можно считать полуэмпирической, как и все предыдущие.

Формула Леви, по-видимому, лучшая из существующих, однако она имеет один существенный недостаток: она плохо применима на границе областей действия коэффициентов. Имен­но около Z и N, равных 28, 40, 50, 64, 82, 126 и 140, формула Леви дает самые большие расхождения, в особенности если по ней рассчитывать энергии β-распадов. Кроме того, коэффициен­ты формулы Леви вычислены без учета новейших значений масс и, по-видимому, должны быть уточнены. По мнению Б. С. Джелепова и Г. Ф. Драницыной, при этом вычислении следует уменьшить число подобластей с разными наборами коэффи­циентов α и δ, отбросив подоболочки Z=64 и N=140.

Характеристики

Тип файла
Документ
Размер
256,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее