149496 (731774), страница 2
Текст из файла (страница 2)
де а- радіус частинки,
-в‘язкість речовини.
Айнштайн оцінює також середній пробіг частинки в речовині за формулою (6), вважаючи при цьому, що Na=6*1023 моль-1?, беручи за речовину – воду при 17 0С (
=1,35*10-2 П ), а радіус частинки а=10-4 см =1мкм, для часу t=1хв, тоді середнє зміщення L=6мкм. Таке зміщення може бути без особливого затруднення помічено в мікроскоп.
З висновків Айнштайна проглядається, що найбільш ймовірним виразом середнього зміщення є його пропорційність квадратному кореню із часу t. Про цю думку вчений згадує в іншій статті, де пише: “Из этой формулы мы видим, что средний путь, проходимый частицей, пропорционален не времени, а корню квадратному из времени. Это происходит от того, что два пути, проходимые последовательно в две следующие друг за другом единицы времени, не всегда складываются, но также часто вычитаются”.
Вчений висловлює сподівання, що можна експерементально перевірити залежність L від а і
. Якщо ж результатом перевірки такої залежності буде підтвердження формули (6) то це буде саме доведенням правильності молекулярно-кінетичної теорії. “Якщо б якому-небудь досліднику вдалось в ближній час розв‘язати порушені тут важливі для теорії теплоти питання!…“ Крім того, формула (6) може бути використана для визначення сталої Авогадро Na.
І от декілька років по тому з‘являються роботи французького фізика Жанна Перрена (1870-1942), настільки “дотепні” і кропітливі, що ними він довів причину існування броунівського руху. Це було в 1908 році. Саме завдяки цим роботам наука підійшла до молекулярно-кінетичного погляду на броунівський рух Друкована праця Перрена вийшла в 1914 році. В літературі зустрічається той факт, що повідомлення про експериментальне підтвердження броунівського руху, в нашій країні стало відомим ще в 1910 році. З цим повідомленням виступив Д.Хмиров на засіданні Харківського фізичного товармства. Цей виступ було опубліковано в журналі товариства під заголовком “Про броунівський рух” за 1910 рік, де дуже широко і дохідно характеризує роботу Айнштайна і експерименти Ж.Перрена.
Основне завдання, що постало перед Перреном, полягало у виготовленні однорідної емульсії броунівських частинок, тобто частинок сферичної форми рівного радіусу. Перрен виготовив їх із гумігуту і мастики, розтираючи пальцями їх у воді або суміші води з спиртом. Після цього суміш поміщали в центрифугу для відсортування. Цю операцію виконував по декілька разів. Потім різними унікальними методами визначав радіус досліджуваної частинки і їх густину. Для прикладу можна привести ряд визначень досліджуваних частинок однієї із партій емульсії, що відповідно були рівними:
0,371мкм, 0,3667кмк, 0,3675мкм.
Якщо помістити таку емульсію в речовину, то вона завдяки броунівському рухові буде намагатися розміститися в ній рівномірно.
Перші експерименти проведені Перреном були направлені на визначення розподілу концентрації емульсії в полі дії сили тяжіння. Він розглядав частинки емульсії як ”гігантські молекули” і відносно них зміг спрогнозувати, що ці “гіганти” будуть вести себе в речовині подібно молекулам розчину. На той час Перрену були вже відомі дослідження Рауля і Вант-Гоффа, які довели, що розчинена речовина при малих концентраціях веде себе подібно ідеальному газу. Отже, Перрен підходить до думки, що якщо таку емульсію помістити в поле діі сили тяжіння, то з молекулярно-кінетичної теоріі слідуватиме, що в момент рівноваги системи повинна встановитися “емульсійна атмосфера”, тобто стан в якому концентрація і за барометричним законом:
n(h)=n0 ехр( mэфgh/кТ ) (7),
Тут n(h)-концентрація емульсії на висоті h. no- концентрація емульсії на висоті h=0, k=R/Na- стала Больцмана, mэф-ефективна маса емульсійної частинки, що може бути визначена як:
де а –радіус емульсійної частинки,
к - відповідно густини емульсійної кульки (частинки) і рідини.
Вимірюючи під мікроскопом n(h) i n0, вчений стримав даний вираз, який дозволяє визначити сталку Авогадро:
Перреном було експерементально отримано, що концентрація n(h), частинок, розміри яких рівні 0,212мкм, зменшувалася приблизно в два рази при збільшенні висоти до h=30мкм.
Вчений також описав і інші виконані ним експерименти, в яких він змінював: 1) розміри досліджуваних частинок (об‘єм) у відношеннях 1
; 2) емульсійну речовину (гумігут, мастика); 3) речовину, в яку поміщали броунівські частинки ( вода, суміш води з 12% гліцерином ); 4) температуру брав переохолоджену воду при –9 0С, воду при +60 0С; 5) змінював висоту; 6) протягом експерименту в‘язкість речовини змінювалася в межах від 1 до 250. Не дивлячись на такі зміни, стала Авогадро коливалась в межах від 6*1023 до 7,2*1023 моль-1.Відносна сталість числа Авогадро, його велике співпадання з тим значенням, що давала кінетична теорія газів, переконливо свідчили на користь молекулярно-кінетичної теоріі тепла.
Перрен пише: “Стає достатньо тяжко протирічити об‘єктиви…”.
Свою роботу Перрен закінчує короткими висновками, де співставляє 16 методів визначення постійної Авогадро, серед яких внутрішнє тертя в газах, розподіл зерен емульсіі з висотою, броунівське зміщення, голубий колір неба, спектр чорного випромінювання, заряд електрона, радіоактивні явища і т.д.. ”Неможна не дивуватись, як добре узгоджуються між собою результати досліджень достатньо різних явищ.
Якщо згадати, що одна і таж величина отримується в наслідок маніпуляцій умов і явищ, до яких застосовані ці методи, то ми отримуємо висновок, що реальність молекул має ймовірність. Достатньо близьку до дійсності. ”.[ ]
Механізм руху окремої броунівської частинки, досліджений Айнштайном, дає нову можливість визначення сталої Авогадро, а відповідно, може бути критерієм правильності молекулярно-кінетичної теорії тепла.
Унікальність робіт Перрена полягає в тому, що він вперше з теорії Айнштайна, в його появненнях до теоріі, посилання на відмінність в концентраціях частинок з висотою, що перебувають в полі діі сили тяжіння або інших зовнішніх сил. Тому експерименти Перрена можна вважати як відкриття.
Перевіряючи експериментально формулу (6), а також знаходячи середнє значення квадрата проекції зміщення броунівської частинки, Перрен отримав значення сталої Авогадро рівним 6,4 1023 моль-1) ( сьогодні користуються значенням 6,0220451023 моль-1).
Література до розділу ІІ
( Наукову спадщину Ван-дер-Ваальса )
-
Clausius R, Ueber das Verhalten der Kohlensaure in Bezug auf Duck: Volumen und Temperatur. A. Ph, 1880 Bd 9.
-
Д. Бернулі “Гидродинамика или записки о силах и движениях жидкостей” Л., 1959, 551ст.
-
Recknagel G., “Ueber Temperatur und Temperaturmass” A. Ph 1874 Epd Bd.6.
-
В. Л. Гинзбург “ Несколько замечаний о фазовых переходах второго рода и
макроскопической теории сверхпроводимости”
5. С . Бретшнайдер “Свойства газов и жидкостей”
М.-Л., 1966. 536ст
6. Lorentz A. A. Uber die Anwendung des Satzes vom Virial in der kinetischen Theirie der Gose
“A. Ph. 1881. Bd 12.
7. Tait P. G. “ Crum Brewn A. Metoir – In: Andrews Th. The scintific papers.”
London. 1889. P. IX-LXII.
-
Л. Больцман “Лекции по теории газов”
М. , 1956. 544ст
-
Alder B.q. “ Ally W. E. Rigby M. Correctiois to the Van der Waals model for mivtures and for
the diffusion coefficient” Phusica 1974? Val 73
-
“ Condensatior of gases” – fn. E. B. Roth ed
London 1902? Vol 27.
-
“Contribution to the theory of binary mixtures”.
-Versl 1908. D 17. L. Proc. 1908. Vol 11
-
Andrews Th. Adress by the Presedent BAAS Rep. 1876 vol 46.p LXXVII-LXXXVI
-
а. Я. Кипнис “Развитие химимческой термодинамики в Росси”
М.-Л., 1964, 348ст
-
Письма Камерлинг-Онесса Н. П. Кастерину от 8и 10 октября 1988 года.
Архив МГУ. Ф 219 оп. і № 299
-
А. Г. Столетов “Заметки о критическом состоянии тел”
Ж. Р. Ф. Х. О 1882, Т.14. час. Физ., отд. 1
-
В. М. Верхунов “История физики в Казанском Университете”
Казань, 1963
-
Н. П. Вукалович, И. И. Новикова “Уравнение состояния реальніх газов”
М., 1948. 339ст.
-
А. Т. Гольдман “М. П. Авенариус и киевская школа експерементальной физики”
УФН, 1951. Т.46
-
А. И. Надеждин “ Физические исследования”
К., 1887, хп. 17ст.















