147052 (730396), страница 3

Файл №730396 147052 (Измерения и неразрушающий контроль на железнодорожном транспорте) 3 страница147052 (730396) страница 32016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Наибольшая чувствительность магнитопорошкового метода достигается при контроле гладко обработанных поверхностей.

На чувствительность контроля и, следовательно, на выявляемость дефек­тов значительно влияют способы намагничивания изделий. Для создания опти­мальных условий контроля применяют три способа намагничивания: продоль­ное, циркулярное и комбинированное (табл.3.1).

Продольное намагничивание осуществляют с помощью электромаг­нитов, постоянных магнитов и соленоидов. При продольном намагничивании поле направлено вдоль продольной оси сварного шва или детали. Применяют продольное намагничивание для обнаружения поперечных дефектов сварки.

Циркулярное намагничивание осуществляется при пропускании тока по контролируемой детали или через проводник (стержень), помещенный в от­верстие детали. Магнитное поле при этом способе направлено перпендикуляр­но плоскости кольцевого сварного шва или продольной оси детали. При такой схеме намагничивания хорошо выявляются продольные дефекты сварки. Наиболее эффективно циркулярное намагничивание при контроле труб, валов, стержней и др.

Таблица 3.1

Основные способы намагничивания

Наименование способа

Средство намагничивания

Графическая схема намагничивания

Продольное (полюсное)

Циркулярное

Комбинированное

Постоянным магнитом, электромагнитом

Соленоидом

Пропускание тока по детали

С помощью контактов, устанавливаемых на деталь

С помощью провода с током¸ помещаемого в отверстие детали

Индуктирование ток в детали

Пропусканием тока по детали с помощью электромагнита

Пропусканием двух или более сдвинутых по фазе токов по детали во взаимно перпендикулярных направлениях

Индуктирование тока в детали и током, проходящим по поводнику, помещаемому в отверстие детали

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

Комбинированное намагничивание осуществляется при одновре­менном намагничивании детали двумя или несколькими магнитными полями. Примером комбинированного намагничивания может быть намагничивание трубы соленоидом и пропускание переменного тока через проводник, прохо­дящий внутри трубы.

3.1.1. Аппаратура магнитопорошкового метода контроля

Основные детали дефектоскопов следующие: источники тока, устройства для подвода тока к детали, устройства для полюсного намагничивания (соле­ноиды, электромагниты), устройства для нанесения на контролируемую деталь порошка и суспензии, измерители тока (или напряженности поля). В дефекто­скопах наиболее широко распространены циркулярное намагничивание про­пусканием переменного тока по детали (или через стержень) и продольное на­магничивание постоянным током.

Для магнитопорошкового контроля в основном применяют дефектоскопы трех видов: стационарные универсальные, передвижные и переносные, специа­лизированные (стационарные и передвижные).

В качестве материала для приготовления порошков в основном исполь­зуют мелко помолотую закись-окись железа с размером частиц 5-10 мкм. Иногда применяют чистую железную окалину, получаемую при ковке и про­катке, а также стальные опилки, образующиеся при шлифовании стальных из­делий. Для лучшей индикации дефектов изделий различного цвета применяют цветные порошки (красный, серебристый и др.). Их получают открашиванием темных порошков или отжигом по специальной технологии.

Для приготовления магнитных суспензий чаще всего используют масля-но-керосиновые смеси (соотношение масла и керосина 1:1) с содержани­ем 50 -60 г порошка на 1 л жидкости. Могут применяться и водные суспензии, например мыльно-водная с содержанием в 1 л воды 5 - 6 г мыла, 1 г жидкого стекла и 25 ± 5 г магнитного порошка.

IV. ВИЗУАЛЬНО-ОПТИЧЕСКИЙ КОНТРОЛЬ ДЕТАЛЕЙ

4.1. Краткие теоретические сведения

Глаз человека является основным контрольным прибором при дефекто­скопии деталей. Визуально проверяются полуфабрикаты и готовая продукция, отклонения от формы и геометрические размеры изделий, изъяны материала, обработка поверхности (крупные трещины и коррозионные поражения) и дру­гие дефекты.

Качество визуального контроля ограничено возможностями глаза и зави­сит от удаленности объекта, слабой освещенности, быстрого перемещения из­делия и др.

Намного расширить пределы естественных возможностей глаза позволя­ют оптические приборы, которые увеличивают остроту зрения и разрешающую способность глаза примерно во столько раз, во сколько увеличивает оптический прибор.

Визуальный контроль с применением оптических устройств называется визуально-оптическим. Это наиболее доступный и простой метод обнаружения поверхностных дефектов изделий.

При визуально-оптическом контроле изделия осматриваются в видимом свете с использованием оптических приборов. Этот вид контроля используется на различных стадиях изготовления детали, в процессе их эксплуатации и ре­монта.

По виду приемника лучей, отраженных от контролируемого изделия, раз­личаются следующие виды оптических приборов:

  • визуальные;

  • детекторные;

  • комбинированные.

Приемником у визуальных приборов является глаз человека. К визуаль­ным приборам относятся обзорные приборы, лупы, микроскопы, эндоскопы и др. В эту же группу входят приборы, с помощью которых измеряются геомет­рические размеры.

У детекторных приборов приемником лучистой энергии являются все­возможные детекторы: химические реактивы, электронные приборы, люминес-цирующие вещества и др.

Комбинированными приборами контроль можно производить визуально и при помощи детекторов.

При визуально-оптической дефектоскопии в основном используются ви­зуальные аппараты, которые можно разделить на три группы:

- приборы для контроля изделий небольших размеров, расположенных от глаза контролера в пределах расстояния наилучшего зрения (лупы, мик­роскопы);

- приборы для контроля удаленных объектов (бинокли, зрительные трубы, телескопические лупы);

- приборы для контроля скрытых объектов, внутренних полостей объектов (перископы, бороскопы, эндоскопы и др.).

4.1.1. Видимость объектов

Видимостью называется степень различимости объектов при их наблю­дении. Она зависит от продолжительности осмотра, контраста, яркости, цвета, освещенности и других условий. Каждому из таких факторов соответствует свой порог видимости, ниже которого объект не будет виден несмотря на бла­гоприятность остальных условий. Например, при слишком малой освещенности предмет нельзя сделать видимым никаким увеличением.

К наиболее существенным условиям видимости относятся контраст и уг­ловые размеры объекта контроля.

За меру яркостного контраста чаще всего принимается отношение:

(4.1)

где Вф - яркость окружающего фона;

Во - яркость рассматриваемого объекта.

При К > 0,5 контраст считается большим, при 0,2 < К < 0,5 - средним и при К < 0,2 - малым.

Порог контрастной чувствительности Клор (т. е. минимальный яркостный контраст, который контролер еще способен различать) для большинства людей равен 0,01 - 0,02 при оптимальных условиях осмотра. В реальных условиях Кпор = 0,05 -0,06.

Отношение значения наблюдаемого контраста к значению порогового контраста в данных конкретных условиях определяет видимость объекта:

(4.2)

Максимального яркостного контраста, а следовательно, и максимальной видимости можно достигнуть при использовании белого и черного цветов или белого с красным.

4.1.2. Оптические приборы

При осмотре с помощью оптических приборов происходит увеличение углового размера рассматриваемого объекта. Острота зрения увеличивается во столько раз, во сколько увеличивает оптический прибор. Это позволяет видеть мелкие объекты, которые нельзя обнаружить невооруженным глазом.

Необходимо помнить, что с ростом увеличения оптических приборов значительно сокращаются поле зрения и глубина резкости, поэтому для осмот­ра деталей применяются в основном приборы не более 20 - 30-кратного увеличения. При общем осмотре и поиске дефектов используют при­боры 2 - 16-кратного увеличения, а при анализе обнаруженных дефектов - при­боры 15 - 30-кратного увеличения.

4.1.3. Микроскоп стереоскопический МБС-10

Стереоскопические микроскопы находят наиболее широкое применение при визуально-оптической дефектоскопии. Они служат для наблюдения прямо­го объемного изображения предметов в отраженном и проходящем свете. Зна-

чительным преимуществом микроскопов этого типа является наличие систем Галилея, переключением которых достигается быстрое изменение увеличения при постоянном рабочем расстоянии. В комплект микроскопа входят широко­угольные окуляры с различным увеличением, с помощью которых можно полу­чить нужное значение.

Микроскоп типа МБС используется для оптического контроля малогаба­ритных и некоторых крупногабаритных деталей. Кроме того, он может приме­няться при капиллярной и магнитной дефектоскопии.

Линейные значения увеличения микроскопа приведены в табл. 4.1. К микроскопу прилагается четыре пары окуляров увеличения 4, 8, 12, 16 с диоп­трийной наводкой, шкалой и сеткой. Округленные значения увеличения указа­ны на корпусах окуляров.

Общий вид микроскопа показан на рис. 4.1. Основным узлом прибора яв­ляется оптическая головка 1, в которую вмонтированы все оптические детали. Объектив микроскопа 14 крепится на резьбе к корпусу головки. Выше объекти­ва в корпусе на подшипниках установлен барабан с системами Галилея. На конце оси насажаны рукоятки 12, при вращении которых происходит переклю­чение увеличения объектива. Округленные значения увеличения 7; 4; 2; 1; 0,57 нанесены на рукоятках.

Для того чтобы установить нужное увеличение, необходимо, вращая ба­рабан, совместить цифру на рукоятке 12 с точкой, нанесенной на подшипнике. При этом перефокусировку производить не нужно. Каждое из положений бара­бана фиксируется щелчком. Оптическая головка имеет механизм фокусировки. При вращении рукояток 18 происходит подъем и опускание оптической голов­ки относительно столика микроскопа. Окулярная насадка устроена так, что по­зволяет изменять межзрачковое расстояние в соответствии с индивидуальными особенностями глаз наблюдателя. На оправах призм крепятся окулярные труб­ки 11. Оправы объективов могут поворачиваться в направляющей. При измене­нии межзрачкового расстояния прибора, вращая призмы вместе с оправами объективов, следует держаться за корпус призм, а не за окулярные трубки.

Контроль объектива можно вести как в проходящем, так и в отраженном свете, для чего имеется осветитель. Он состоит из конденсатора и лампы с па­троном, объединенных в общем корпусе. Питание лампы осуществляется от се­ти переменного тока напряжением 220 В только через блок питания 24.

Рис. 4.1. Микроскоп МБС-10:

1 - барабан с корпусом; 2 - столик микроскопа; 3 - основание стола; 4 - кольцо диоптрийной наводки; 5 - бинокулярная насадка; 6 - рукоятка механизма изме­нения межзрачкового расстояния; 7 - фиксатор столика; 8 - винты, фиксирую­щие бинокулярную насадку; 9 - втулка осветителя; 10 - гайка осветителя; 11 -окулярная трубка; 12 - рукоятки переключения увеличений; 13 - стойка; 14 -объектив f = 90 мм; 15 - предметное стекло; 16 - держатели; 17 - рукоятка фо­кусировки; 18 - рукоятка регулировка хода; 19-кольцо

V. МЕТОДЫ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ СОСТОЯНИЯ РЕЛЬСОВ

Железные дороги Северной Америки ежегодно тратят около 80 млн. дол. На проверку состояния рельсов. Большинство дефектов выявляются до момента их перерастания в опасные, однако изломы рельсов в пути полностью исключить не удается. Поэтому железные дороги ведут исследования по повышению надежности дефектоскопии рельсов в условиях эксплуатации за счет совершенствования существующих методов неразрушающего контроля, особенно за счет более широкого приминения бесконтактных технологий.

Табл 1

Методы

Механический и оптический

Проникающее излучение

Электромагнитный и электронный

Звуковой и ультразвуковой

Химико-аналитический

Анализ изображения сигнала

Термический

Визуально-оптический

Рентгенография

Магнитные частицы

Импульсный эхосигнал

Методом пятна

Выделение видеосигнала

Контактная термография

Голография

Флуороскопия

Магнитный резонанс

Звуковые колебания

Ионное рассеивание

Цифровое преобразование изображения

Термоэлектрический пробник

Анализ среза

Гамма-радиография

Эффект Баркгаузена

Акустическая эмиссия

Дифракция рентгеновских лучей

Компьютерная томография

Радиометрия инфракрасных лучей

Проникающая жидкость

Нейтронная радиография

Вихревой ток

Лазерный

Активация нейтронами

Ультразвуковая спектроскопия

Видеотермография

Обнаружение течи

Радиометрия обратного рассеивания

СВЧ-излучение

Акустический и ударный

Анализ Мёссбауэра

Анализ контура сигнала

Электротермальный

Табл 2

Рабочие характеристики ультразвуковых щупов

Щуп преобразователя

Расстояние от щупа до обсле­дуемой детали

Чувствитель­ность

Эффектив­ность

Сложность щупа

Сложность сканирующей системы

Достоверность сигнала

Пригодность к, обследован ню оолыних со­оружений

Скользящий контакт

Контакт

Высокая

Высокая

Низкая

Высокая

Низкая

Низкая

Погружение

Фокусное рас­стояние

Средняя

*

Высокая

*

Барботер

Контакт

*

Высокая

Средняя

Средняя

*

Водная струя

1 - 20 см

»

Средняя

Средняя

»

Высокая

Высокая

Воздушная среда

1 - 50 см

Средняя

Низкая

Средняя

»

Электромагнитный1

<0,2см

Низкая

*

Высокая

Высокая

Низкая

Низкая

Л азер-опти чес ки й

1 - 1000 см

Средняя

Средняя

Высокая

Высокая

1 Требуется электропроводный материал

Характеристики

Тип файла
Документ
Размер
13,54 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6933
Авторов
на СтудИзбе
266
Средний доход
с одного платного файла
Обучение Подробнее