145945 (728991), страница 3
Текст из файла (страница 3)
В зависимости от требуемой степени влагопрочности эти смолы вводят в массу в количестве от 1 до 5 % сухой смолы к массе сухих волокон. Наблюдения показали, что наиболее целесообразно вводить смолы в напорный ящик бумагоделательной машины.
Технологический процесс изготовления влагопрочных видов бумаги на бумагоделательной машине, в общем, ничем не отличается от соответствующего процесса изготовления обычной бумаги за исключением режимов сушки и переработки сухого брака. При сушке происходит поликонденсация находящихся в бумаге искусственных смол, переход их в водонерастворимое состояние с образованием между ними и растительными волокнами связей, которые вода уже не может полностью разрушить. Для протекания поликонденсации необходимо поддерживать температуру в середине и конце сушильной части в пределах 115-120°С.
Кроме указанных формальдегидных смол для придания бумаге влагопрочности применяют также диальдегидно-галактоманнановые смолы. Действие этих смол, повышающих прочность бумаги в сухом и во влажном состояниях, основано, судя по литературным данным, на блокировании гидроксильных групп в молекуле целлюлозы и образовании карбонильных групп. Заметно повышается прочность бумаги в воздушносухом и во влажном состояниях уже при расходе диальдегидной смолы всего лишь 1 % к массе волокон. Опыты показали, что с увеличением помола целлюлозы отмечался рост влагопрочности изготовляемой бумаги.
В тех случаях, когда бумага подвергается кратковременному действию влаги, для придания ей влагопрочности может быть использован глиоксаль, образующий с гидроксильными группами целлюлозы полуацетальные связи по схеме:
Полуацетальные связи глиоксаля с целлюлозой быстро возникают при высушивании и легко разрушаются при погружении бумаги в воду.
Одним из важных преимуществ технологии изготовления бумаги с использованием глиоксаля для придания ей влагопрочности по сравнению с технологией изготовления влагопрочной бумаги с применением мочевино- или меламино-формальдегидной смол является то, что влагопрочность бумаги не зависит от температуры сушки. У такой бумаги высушенной при комнатной температуре или при 100-150°С, влагопрочность одинакова и находится в пределах 30-40 %.
В бумажную массу глиоксаль вводить не рекомендуется, так как его реакция с гидроксильными группами целлюлозы протекает так же, как и с гидроксильными группами воды. Поэтому в присутствии большого количества воды глиоксаль реагирует не с целлюлозой, а с водой. Таким образом, лучшим способом использования глиоксаля для выработки влагопрочных видов бумаги является способ пропитки готовой бумаги.
Для изготовления влагопрочных видов бумаги представляет интерес применение в их композиции смол, полимеризующихся в слабощелочной или нейтральной среде. Использование подобных смол при изготовлении бумаги дает возможность без уменьшения впитывающей способности бумаги по отношению к воде получить одновременно высокую степень влагопрочности.
Одной из таких смол является поли-β-аспарагинвая смола катионного типа, хорошо растворяющаяся в воде и затем из водного раствора легко осаждаемая на растительных волокнах. Эта смола, судя по литературным данным, обнаруживает высокую эффективность действия даже в условиях введения ее в массу в малых количествах (примерно 1 % к массе волокон). Дальнейшее увеличение вводимой в массу смолы существенно увеличивает влагопрочность бумаги. Указанная смола способствует:
-
увеличению удержания в бумаге минерального наполнителя и мелких волокон (мельштофа);
-
повышению степени проклейки бумаги в случае применения канифольного клея;
-
уменьшению склонности бумаги к выщипыванию с ее поверхности отдельных волоконец, т.е. повышению прочности поверхностного слоя бумаги.
По данным работы [10], при изготовлении влагопрочных видов бумаги для печати весьма пригодной оказалась полиамидо-полиамино-эпихлоридная смола (ППЭ). Она одновременно придает бумаге много ценных свойств: повышенное удержание минеральных наполнителей и мелких волокон, стабильность размеров, повышенные показатели механической прочности и особенно сопротивления отделению волокон с поверхности бумаги (при введении в массу из неразмолотой и непроклееной целлюлозы 1 % ППЭ этот показатель увеличивается в 2 раза), устойчивость к старению в случае использования в качестве наполнителя карбоната кальция и проклейки в нейтральной среде, хорошую способность к восприятию печатной краски (при оптимальной добавке в данном случае 0,35-0,5 % смолы).
Как видно из рассмотренных примеров ассортимент функциональных химических соединений очень разнообразен и постоянно обновляется. Химической промышленностью выпускаются более эффективные добавки нового поколения. Назначение новых функциональных химических соединений известно. Однако прежде, чем применять их при производстве бумаги следует определить какое количество химиката является наиболее эффективным, как во времени изменяется его влияние на бумажную массу, зависимость от температуры и рН среды. К тому же функциональные химические соединения могут неоднозначно вести себя в технологическом потоке и вызвать ряд нежелательных эффектов. Следовательно, перед использованием новой добавки следует всесторонне изучить е влияние на различные факторы технологического процесса. Данная исследовательская работа направлена на изучение влияния функциональных химических соединений на обезвоживание волокнистой массы. Она является началом большой научной работы, которая будет продолжена в будующем.















