144679 (727737), страница 9
Текст из файла (страница 9)
Общественный центр в Чикаго, выстроенный с 1963 по 1966 г. К. Ф. Мерфи в содружестве с проектным бюро СОМ и с привлечением широкой группы архитекторов, представляет собой сооружение, непревзойденное по смелости и четкости форм из стальных конструкций. Это — наивысшая точка расцвета среди работ второй Чикагской архитектурной школы. Здание превосходит «БМА-билдинг» в Канзас-Сити, «Эквитейбл-билдинг» в Чикаго проектного бюро СОМ и «Континенталь-центр» в Чикаго К. Ф. Мерфи не столько высотой (31 этаж, 195 м), сколько неслыханными до сих пор пролетами перекрытия (26,5X14,7 м) Большой шаг колонн был обусловлен, во-первых, трудностями устройства основания с помощью кессонов на 30-метровой глубине на подстилающей скале; во-вторых, особенно высокими требованиями, которые предъявлялись к многочисленным помещениям непостоянного назначения: контор, конференц-залов, больших и маленьких залов судебных заседаний и т. д. Гибкость планировки простирается здесь даже на третье измерение, так как большие залы заседаний проходят через два этажа, а промежуточное перекрытие может раздвигаться. В качестве несущих элементов перекрытий в обоих направлениях применены решетчатые сварные балки высотой 1,5 м. Колонны крестообразного сечения из высокопрочной стали, примененные впервые, оказались очень удобными для приварки прогонов в любом направлении в зависимости от сетки колонн с двух, трех или четырех сторон
Разделением вертикалей и горизонталей и сокращением сечений колонн в верхних этажах достигнута наглядность всей структуры в отличие от скрытого намека на несущую структуру в фасаде здания на Лейк-Шор-Драйв. Заимствованная у того же здания металлическая облицовка несущего каркаса оптически и статически активизирована: рандбалки, как и колонны, одеты в бетон, поверх которого размещено покрытие из сваренных листов стали кор-тен. Листы стали, как и рандбалки, заанкере-ны в бетоне; это обеспечивает лучшее соединение и более высокую прочность несущего каркаса — колебания верхней части здания при порывах ветра значительно уменьшены. Поскольку для восприятия горизонтальных усилий недостаточно одних многоэтажных рам, предусмотрено похожее на примененное раньше в здании Сигрэм ( комбинированное обеспечение жесткости: в верхней половине здания только рамы, в нижней — рамы и расположенные между колоннами ветровые связи.
Построенный в 1962 г. «Брунсвик-бил-динг» стоит напротив Общественного центра в Чикаго и убедительно демонстрирует наступление железобетона. Для обеспечения жесткости против воздействия ветра здесь применена система рам вместе с массивным ядром жесткости. Устойчивость наружной стены сильно подчеркнута: фасадные пилястры вырастают из мощного цокольного корпуса. Но, к сожалению, цоколь стоит не на земле, а поставлен, как на ходулях, на широко расставленные опоры. Такое решение продиктовано требованиями городского транспорта, а также сложностью устройства кессонного основания.
Постройкой в 1963 г. жилого «Каштанового дома» высотой 143 м было начато применение системы «труба» для железобетонного остова зданий. Продолговатый план и изменяемость квартирной планировки не позволили устроить ядро жесткости, поэтому горизонтальные усилия полностью воспринимаются монолитной пространственной структурой наружных стен, действующей как вставленная в фундамент труба. Рекорд высоты для американских железо-бетонных небоскребов был достигнут в 1968 г. постройкой 52-этажного (218 м) здания «Уан Шелл Плаза» в Хьюстоне (штат Техас). Здесь ограждение действует совместно с внутренней трубой массивного ядра жесткости («труба в трубе») — сходно со зданиями «КБС-билдинг» в Нью-Йорке, а также «Брунсвик-билдинг» в Чикаго.
Стремление к более эффективному методу обеспечения жесткости против воздействий ветра, более интенсивному использованию прочности и большой ширины диска наружной стены наблюдается и в металлическом каркасном строительстве. Однако здесь эти меры могут быть экономически оправданы для зданий на 20, 40, 60 этажей выше, чем железобетонные здания.
В здании «Юс Стил билдинг» высотой 256 м в Питтсбурге ограждения треугольного ядра жесткости превращены в каркасные диски и на углах жестко связаны друг с другом, образуя жесткую трубу, ь укрепленную в фундаменте и восприни-Щ мающую все горизонтальные нагрузки Ц . В верхнем этаже эта Z конструкция в виде трубы соединена с помощью жестких консолей с наружными щ колоннами, которые включаются в работу при порывах ветра, воспринимая сжимающие и растягивающие усилия при деформациях трубчатого ядра и предотвращая искривление плоскости крыши; при этом они уменьшают размах колебаний верха здания. Необычно далеко выставленные, необлицованные главные колонны имеют наряду со статическими функциями другое важное значение для заказчика — мощнейшего объединения стальной индустрии: они демонстрируют успех, которого строительство их стальных конструкций добилось _ в борьбе против обеих «наследственных болезней» — пожарной и коррозионной . опасности. Профили коробчатого сечения, как и облицовка отступающего назад фасада, состоят из атмосферостойкой стали и заполнены водой, подаваемой системой охлаждения, которая в случае пожара должна срабатывать автоматически .
С помощью пространственных рам оказалось вполне возможным преодолеть высоту от 70 до 80 этажей. Эта высота ! теоретически могла бы быть удвоена, если | перейти от внутренних пространственных рам к жесткому фахверку наружных стен, а прочность дисков и колонн каркаса наруж- j ных стен усилить диагональными элементами, т. е. если бы фасады решались в сетке диагональных стержней, как в высотном доме ИБМ в Питтсбурге , или если бы главные колонны были включены в фахверк, как в высотном доме «Алкоа» в Сан-Франциско, где наружный фахверк в соединении с добавочными многоэтажными рамами в центре здания служит для восприятия горизонтальных усилий и сейсмических воздействий. В 100-этажном здании «Джон Ханкок-центр» в Чикаго (архитекторы Б. Грехэм и фирма СОМ, 1968 г.) не только мощные диагонали с вертикальными элементами были объединены в жесткие узлы, но и горизонтальные рандбалки включены в решетку фасадов. Необходимая прочность оболочки и экономичность решения достигались при достаточно простом решении окон; расход стали на 1 м2 поверхности при этом не выше чем в 50-этажных дом Сильное опору, с огромными размерами распорных крестов придало зданию высшую степень архитектонической выразительности. Монументальность приобретает здесь несколько мрачный, угрожающий вид отчасти из-за облицовки стального каркаса черными анодированными алюминиевыми листами. Такая облицовка с расположенной под ней огнезащитной и тепловой изоляцией оказалась нерентабельной.
Непрерывно уменьшающиеся по мере увеличения высоты зданий площади и глубина помещений также были запланированы и обусловлены — они соответствовали чрезвычайному разнообразию функциональных назначений. «Джон Ханкок-центр» является целым городом. Он включает парковую зону, магазины, бюро проката, общественные помещения, спортивные сооружения, комбинат бытового обслуживания; начиная с 46-го этажа, расположены жилые квартиры и, наконец, на самом верху — ресторан и телевизионная станция. Внутренний несущий каркас рассчитан лишь на вертикальную нагрузку; внутренние колонны и балки перекрытий шарнирно связаны, а подвесные потолки могут быть удалены и вновь поставлены на место.
Международный торговый центр в Нью-Йорке, строительство которого началось в 1966 г., со своими 110-этажными близнецами-башнями высотой по 411 м отражает градостроительную идею, которая была реализована в Чикаго при возведении первого блока на Лейк-Шор-Драйв. Строгое вертикальное членение напоминает «КБС-билдинг» Сааринена, но архитектура Международного торгового центра не имеет ни строгости чикагской школы, ни бурной мощи «КБС-билдинг».
Статически речь шла вновь о системе «трубы», заделанной в фундамент, которая воспринимает ветровые усилия, а внутренние колонны, как и в «Ханкок-центр», были рассчитаны лишь на вертикальные нагрузки. С помощью жесткой связи облицовочных плит с колоннами наружная стена превращается в безраскосную раму Виренделя с тысячью ячеек — вся оболочка «трубы» состоит из металлических пластин, прорезанных узкими оконными щелями и укрепленных ребрами жесткости коробчатого профиля.
Сборные элементы, из которых собрана па болтах гигантская стальная сетка фасада, состоят из трех подоконных листов и трех трубчатых колонн, объединенных вместе; они имеют в принципе одинаковую форму и основаны на идее железобетонных сборных элементов, которыми был облицован высотный дом Газовой компании в Детройте архитектора Ямасаки; только здесь их значение неизмеримо возросло в связи с высокими требованиями и высокой стоимостью здания. Внешняя утонченность фасадов небоскреба стоит относительно дорого, а расход стали значительно выше, чем в «Ханкок-центре».
Международный торговый центр еще не был облицован, а в Чикаго уже завершалось строительство третьего здания из числа супернебоскребов — 109-этажного корпуса «Сирс-билдинг» высотой 445 м, запроектированного Б. Грехэмом, — крупнейшего административного здания. Жесткость здания обеспечивается целой серией решетчатых систем: 3X3 квадрата с длиной стороны каждого квадрата по 22,5 м, соединенных вместе. При использовании здания только для конторских помещений двойной крест внутренних рядов колонн практически не мешает; умелым расположением лифтовых групп можно достичь значительной гибкости помещений, однако этому препятствовало расположение диагональных связей жесткости. Таким образом, Грехэм пришел к системе из рам Виренделя, как Ямасаки в нью-йоркской двойной башне. Расположение колонн и окон в башне «Сирс-билдинг», однако, значительно более редкое. Высокий расход стали был компенсирован удивительно коротким периодом строительства — здание сооружено за 15 месяцев. Фасады были смонтированы из готовых элементов высотой на три этажа.
Башня «Сирс-билдинг» не только самая высокая из трех нью-йоркских башен, но и, вероятно, самая ценная с точки зрения той архитектуры, которая укоренилась в американских высотных зданиях. Металлический внешний каркас башни указывает на принадлежность ее ко второй Чикагской школе; уступчатость корпуса здания менее ярко выражена, чем в зданиях «Рокфеллер-центр» и «Вульворт-билдинг» в Нью-Йорке и в более ранних зданиях, которые имеют схожую схему из девяти квадратных призм, расположенных уступами.
Если башня «Сире» является венцом первых 100 лет каркасного строительства с применением стальных конструкций, то это не значит, что в перспективе они будут применяться только для сооружения небоскребов. Современные каркасные конструкции, как и все значительные конструкции в истории строительного искусства, там, где к ним предъявлены высочайшие требования, приводят архитекторов к простым и совершенным геометрическим формам. План башни «Сире», закономерность, с которой девять квадратов постепенно прерываются по мере подъема вверх, имеет что-то от «магического квадрата». Геометрия здесь — родоначальница и основной принцип строительного искусства, духовная связь между архитектурным и инженерным замыслом. Стальные конструкции в наибольшей степени способствуют воспитанию ясного геометрического мышления. Таковы выводы, которые мы извлекаем из развития строительства высотных зданий в США,