135795 (722636), страница 2

Файл №722636 135795 (Теории электрической связи: Расчет приемника, оптимальная фильтрация, эффективное кодирование) 2 страница135795 (722636) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Следует уточнить, что приведенные данные о энергии сигналов ДАМ, ДЧМ и ДФМ относятся к пиковым мощностям этих сигналов. В этом смысле при переходе от ДЧМ к ДАМ мы имеем двукратный выигрыш в пиковой мощности, однако при ДАМ сигналы имеют пассивную паузу, т.е. мощность сигналов в паузе равна нулю, поэтому по потребляемой передатчиком мощности, кроме проигрыша по мощности, имеется еще и двукратный выигрыш. С учетом этого, при переходе от ДЧМ к ДАМ проигрыш по мощности компенсируется двукратным выигрышем за счет пассивной паузы ДАМ, в результате чего по потребляемой мощности эти сигналы оказываются равноценными, однако при ДАМ трудно установить необходимый порог в сравнивающем устройстве, а при приеме сигналов ДЧМ регулировка порога не требуется, в связи с этим свойством ДЧМ применяется чаще, чем ЧАМ.

Вероятность ошибки зависит от вероятности некорректного приема сигналов S1 и S2, но при применении приемника Котельникова предполагается что канал связи – симметричный, т.е. совместные вероятности передачи и приема сигналов

S1 и S2 равны. Исходя из этого запишем формулу вероятности ошибки: (7)

Возьмем формулу 7 за основу для определении вероятности ошибки в приемнике Котельникова.

Предположим, что нам известно, что на вход приемника поступает сигнал S1(t). в этом случае используя правило приемника Котельникова, в котором должно выполняться следующее неравенство:

(8)

При сильной помехе знак неравенства может измениться на противоположный, в результате чего вместо сигнала S1(t) на вход может поступить сигнал S2(t), т.е. произойдет ошибка. Поэтому вероятность ошибки можно рассматривать, как вероятность изменения знака неравенства (8). Подставляя вместо x(t)=S1(t)+n(t). Преобразовывая получаем:

(8)

Вероятность ошибки в приемнике Котельникова, выраженная, через эквивалентную энергию Еэ, которая представляет собой разность сигналов S1(t) и S2(t) и будет определяться формулой:

Формулы вероятности ошибки для ДАМ, ДЧМ и ДФМ. Приведены соответственно: 6, 5, 4.

2.1.2. Преобразование приемника Котельникова применительно к фазовой модуляции.

Приемник Котельникова, являющийся идеальным и обеспечивающий оптимальную помехоустойчивость использует для приема и распознавания информации, передаваемой по каналу связи все параметры передаваемого сигнала (фаза, частота, амплитуда), кроме того в приемнике Котельникова, в отличии от реального приемника отсутствуют фильтры на входе, обеспечивающие фильтрацию помех. Схема приемника Котельникова приведена на рис. . В качестве опорного генератора применим фазовый опорный гетеродин. Схема преобразованного приемника приведена на рис.8.














Рис.8

Вычислим отношение энергии сигнала Е к спектральной плотности N0.

Энергия сигнала при фазовой модуляции вычисляется по формуле:

Eэ=Pc T (2.1.)

, откуда отношение энергии к спектральной плотности сигнала будет равно:

;

Найдем вероятность ошибки в приемнике Котельникова, применительно к фазовой модуляции.

; (2.2.) ; .

Из сравнения потенциальной помехоустойчивости приемника Котельникова с потенциальной помехоустойчивостью когерентного приемника с фазовой модуляцией, можно сделать вывод, что помехоустойчивость приемника, использующего в качестве информационного параметра фазу, почти приближена к вероятности ошибки приемника Котельникова.

3. Оптимальная фильтрация.

Отметим, что оптимальный приемник, является корреляционным, сигнал на его выходе представляет собой функцию корреляции принимаемого и ожидаемого сигналов, благодаря чему обеспечивается максимально-возможное отношение сигнал/шум.

Так как определение функции корреляции является линейной, то её можно реализовать в некотором линейном фильтре, характеристики которого являются такими, что отношение сигнал/шум на его выходе получается максимальным. Задача оптимальной фильтрации непрерывного сигнала ставится так, чтобы обработав принятый сигнал, получить на выходе приемника сигнал, наименее отличающийся от переданного сигнала. Решение этой задачи основывается на трех основных предположениях:

  1. Сигнал S(t) и помеха w(t) представляют собой стационарные случайные процессы;

  2. Операция фильтрации предполагается линейной;

  3. Критерием оптимальности считается минимум среднеквадратичной ошибки.

Рассмотрим задачу синтеза фильтров, которые используются в схемах обнаружения и различения дискретных сигналов. Как правило эти фильтры ставятся перед решающим устройством, задача которого – вынести решение в пользу того или иного сигнала. Нужно отметить важное обстоятельство, что при приеме дискретных сигналов нет необходимости заботиться о сохранении формы сигнала. Основная задача – обеспечить минимум ошибочных решений при приеме сигналов. Очевидно, что вероятность ошибочного приема будет уменьшаться. Поэтому при синтезе фильтров для дискретных сигналов используется критерий максимума отношения сигнал/шум на выходе фильтра. Фильтры, удовлетворяющие данному критерию могут называться оптимальными фильтрами, или фильтрами, максимизирующими отношение сигнал/шум.

На вход фильтра с передаточной функцией K(jw) подается смесь сигнала S(t) и помехи n(t). Полагаем сигнал полностью известным, неизвестным считается лишь факт его присутствия. Известны также статистические характеристики шума (помехи). Требуется синтезировать такой фильтр (т.е. Копт(jw)), который обеспечивал бы на выходе в заданный момент времени (момент принятия решения) t0 наибольшее отношение пикового значения сигнала y(t0) к среднеквадратичному шуму n:

(3.1.)

Рассмотрим случай, когда шум на входе фильтра имеет равномерный энергетический спектр G(w)=02 (белый шум). Сигнал может быть задан своей временной функцией S(t) или комплексным спектром.

комплексный коэффициент передачи фильтра представим в форме:

тогда для сигнала и дисперсии шума на выходе фильтра можно записать:

(3.2.)

(3.3.)

Примем t0 – как некоторый фиксированный момент времени, при котором амплитуда на выходе фильтра достигает своего максимального значения. Для этого значения времени получим:

(3.4.)

отношение квадрата пикового значения сигнала к дисперсии шума в момент времени t0 будет равно:

(3.5.)

Дальше задача сводиться к отысканию коэффициента передачи Kопт(jw), обеспечивающего максимум значения h2. Для этого можно воспользоваться неравенством Шварца-Буняковского для комплексных функций.

(3.6.)

данное неравенство превращается в равенство только при условии:

, где а – некоторая постоянная. (3.7.)

Подставляя неравенство (3.6.) в (3.7.), замечаем, что максимум величины h2 обеспечивается при выполнении условия:

(3.8.)

из последнего выражения получим:

K(w)=aS(w), K(w)+S(w)+wt0=0

Откуда находим:

K(w)+S(w)+wt0=0

K(w)=-S(w)-wt0.

Таким образом, передаточная функция оптимального фильтра должна определяться выражением:

(3.9.), где * обозначает комплексно-сопряженную величину. Тогда отношение сигнал/шум в момент времени t0 будет равно:

, где E – энергия сигнала на входе фильтра. Величина hm2 определяется только энергией сигнала и не зависит от его формы.

Пояснения к полученным результатам.

АЧХ оптимального фильтра отличается постоянным множителем от амплитудного спектра сигнала, поэтому оптимальный фильтр пропускает различные частотные составляющие сигнала неравномерно с тем большим ослаблением, чем меньше интенсивность этих составляющих, в результате полная мощность шума на выходе фильтра получается меньшей, чем при равномерной АЧХ.

Заметим, что член выражения wt0 для фазовой характеристики означает сдвиг во времени на величину t0 всех частотных составляющих сигнала. Приведенные равенства означают, что в момент времени t0 все спектральные составляющие сигнала фильтра имеют одну и ту же начальную фазу. Оптимальный фильтр обеспечивает компенсацию начальных фаз составляющих сигнала. Складываясь в фазе, спектральные составляющие сигнала образуют в момент времени t0 пиковый выброс выходного сигнала. На составляющие шума, имеющие случайные начальные фазы, оптимальный фильтр таково влияния не оказывает.

Вследствие этих двух причин оптимальный фильтр обеспечивает максимум пикового напряжения сигнала к среднеквадратичному значению шума.

Так как частотные характеристики оптимального фильтра, обеспечивающего максимум отношения сигнал/шум, полностью определяются спектром (т.е. формой) сигнала, то говорят, что они согласованы с сигналом, а такой фильтр называют согласованным для данного сигнала. Следует отметить, что оптимальный фильтр для сигнала S(t) будет являться оптимальным и для всех сигналов той же формы, но отличающихся от него амплитудой, временным положением и начальной фазой заполнения (для радиоимпульсов).

Полученные выше результаты относятся к случаю приема сигналов с белым шумом. Рассматривая более общий случай, когда шум имеет неравномерную спектральную плотность Gn(w), можно показать, что передаточная функция оптимального фильтра должна определяться выражением

(3.10.)

Оптимальный фильтр в этом случае можно представить в виде последовательного соединения двух фильтров. Первый из них имеет амплитудно-частотную характеристику , его назначение – “обелить” шум, который поступает на вход фильтра. Второй фильтр с передаточной характеристикой K2(jw) является оптимальным для искаженного сигнала (после первого фильтра), но уже при белом шуме.

Здесь интересно отметить следующее обстоятельство.Если квадрат амплитудно-частотного спектра сигнала совпадает по форме со спектральной плотностью шума, т.е. , то АЧХ оптимального фильтра должна быть равномерной (K(w)=K=const).

Определим импульсную переходную функцию согласованного фильтра. Импульсной переходной функцией называется отклик цепи на короткий импульс (дельта-функция). Она связана с передаточной характеристикой преобразование Фурье:

(3.11.)

Характеристики

Тип файла
Документ
Размер
1,2 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее