KeramikaReferat (722564), страница 4

Файл №722564 KeramikaReferat (Электроизоляционная керамика) 4 страницаKeramikaReferat (722564) страница 42016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

4. МЕХАНИЧЕСКАЯ ОБРАБОТКА И МЕТАЛЛИЗАЦИЯ КЕРА-МИЧЕСКИХ ИЗДЕЛИЙ

Механическая обработка. В современной технике находят широкое применение керами­ческие изделия, соответствующие жестким тре­бованиям по точности размеров, форме и чи­стоте обработки поверхности. Обеспечить вы­полнение таких требований способами обычной керамической технологии не представляется возможным. Изготовленные изделия всегда имеют незначительные отклонения размеров от заданных, обусловленные некоторой неста­бильностью усадки в процессе сушки и обжи­га. Значения усадки зависят как от состава материалов, так и от некоторых технологиче­ских операций./7/

Для получения керамических изделий, имеющих точные размеры и высокую чистоту поверхности, используют механическую обработку обожженных изделий путем шлифова­ния. Для шлифования в основном используют шлифовальные круги и реже порошки из аб­разивных материалов: алмаза, нитрида бора, карбида кремния, электрокорунда и др. (см. приложения, табл. 12).

Механическая обработка керамических изделий всеми видами шлифования осущест­вляется абразивными инструментами из кар­бида кремния и алмаза различной зернистости. Для шлифовки применяют шлифовальные кру­ги, головки, бруски и сегменты соответст­венно шлифуемой поверхности.

Максимальная рабочая скорость абра­зивного инструмента обусловливается типом связующего материала. Так, для алмазного шлифовального круга на керамическом связую­щем рабочая окружная скорость составляет 25 м/с, а на фенолформальдегидном — до 35 м/с.

Для обработки керамических изоляторов, обладающих высокой твердостью и хруп­костью, наиболее эффективным является ал­мазный инструмент на металлическом и фе­нолформальдегидном связующем. Алмазный абразивный инструмент на металлическом свя­зующем используется в основном для черно­вого шлифования керамики, а на фенолфор­мальдегидном связующем — для окончатель­ного, чистого шлифования.

Алмазные круги на металлическом связу­ющем имеют более длительный срок службы. Для черновой обработки керамических изде­лий используют крупнозернистые абразивные круги, а для окончательной чистовой обработ­ки поверхности применяют тонкозеристые аб­разивные инструменты.

Для шлифования керамических изделий используют обычные металлообрабатывающие станки: токарно-винторезные со шлифовальной головкой, токарно-карусельные, шлифовально-карусельные, универсально-шлифовальные и др. Крепление керамических изделий на станке производится при помощи специальной технологической оснастки, обеспечивающей прочное и безопасное положение детали в работе.

Режимы шлифования керамических изделий зависят от свойств керамического материала, от показателей используемого абразивного инструмента и устанавливаются экспериментально. При черновой обработке изделий в большинстве случаев толщина слоя, снимаемого шлифовкой за один проход, составляет примерно 0,25 мм, а при чистовой — 0,005— 0,025 мм.

Для охлаждения в процессе шлифования применяют 2—5 %-ный водный раствор кальцинированной соды, который подают со ско­ростью 20 л/мин.

При круглом шлифовании наружной по­верхности изоляторов цилиндрической формы обрабатываемый изолятор и шлифовальный круг вращаются в одну сторону, а при обра­ботке круглых внутренних поверхностей кера­мических изделий шлифовальный круг и обра­батываемая деталь вращаются в противопо­ложные стороны. Шлифование торцевых по­верхностей цилиндрических изделий может производиться на плоскошлифовальном станке с использованием соответствующей оснаст-ки./10/

Металлизация керамики. Металлические покрытия на поверхности керамики могут слу­жить электродами конденсаторов, испытуемых образцов, витков катушки индуктивности или промежуточным слоем для соединения кера­мики с металлической арматурой посредством пайки.

Металлические покрытия керамики можно осуществлять методами вжигания металлосодержащей краски (пасты), испарения и кон­денсацией металла (серебра, золота, никеля, палладия и др.) в вакууме, химического осаж­дения, шоопирования и др.

Металлические покрытия должны обла­дать хорошей электропро-водностью (особенно для высокого напряжения высокой частоты) при малой толщине электродного слоя. Для таких покрытий чаще всего применяют благо­родные металлы (в основном серебро и пал­ладий), устойчивые к окислению. Покрытия, предназначенные для последующей пайки с металлической арматурой, производятся из тугоплавких металлов в сочетании с различ­ными добавками.

Вжигание паст — наиболее распростра­ненный способ металлизации. Основным ком­понентом металлосодержащей пасты является окись серебра, азотнокислое серебро или тон­кодисперсный порошок металлического сереб­ра. Для спекаемости покрытия и хорошей адгезии по отношению к поверхности керамики в пасту вводятся 5—7 % (по массе) плавней в виде борнокислого свинца, оксида висмута или других соединений висмута. Компоненты пасты смешиваются с органическими связую­щими, представленными раствором канифоли в скипидаре или смесью скипидара с касторо­вым маслом до получения однородной массы. Паста, изготовляемая промышленностью на специализированных заводах, содержит 55— 70 % (по массе) металлического серебра.

Нанесение серебряной пасты на керамиче­ские изделия производится вручную кисточкой, пульверизатором, окунанием, а в массовом производстве — шелкографией. Нанесенные покрытия сушат при температуре 80—150 °С в термостатах или в проходных сушилках. Об­жиг производится при температуре 750—850 оС в муфельных или проходных печах в воздуш­ной среде. В процессе обжига покрытия в ин­тервале температур 200—400 °С, т. е. при вы­горании органической связки, подъем темпера­туры должен быть замедленным во избежание вспучивания покрытия и образования трещин на металлизированной поверхности. Режим вжигания серебряной пасты устанавливается экспериментально. Он зависит от нагревостойкости керамики, размеров и конфигурации металлизируемого изделия. Длительность про­цесса может составлять 5—35 ч.

Толщина однократно металлизируемого слоя серебра составляет 3—10 мкм. В случае необходимости для получения покрытия с бо­лее толстым слоем деталь металлизируют 2 — 3 раза, проводя последовательно вжигание каждого нанесенного металлизированного слоя. Толщина металлизирующего слоя на из­делиях среднего размера составляет 40 — 50 мкм.

Металлизация составами на основе туго­плавких металлов применяется для различных вакуум-плотных керамических изделий из фар­фора, стеатита, форстерита и корундовой ке­рамики. В металлизирующий состав входят различные добавки: марганец, железо, крем­ний, оксиды металлов — А12О3, ТiО2, Сr2О3, карбиды, бориды и специальные плавни.

Металлизация различных типов керамиче­ских материалов производится по схеме: очист­ка изолятора от загрязнений, обезжиривание, приготовление и нанесение металлизирующего состава, вжигание покрытия, зачистка, нанесе­ние второго металлизирующего состава, вжи­гание второго покрытия и контроль качества покрытия.

Для приготовления металлизирующих паст используют материалы, получаемые с завода-изготовителя в виде тонкомолотых порошков с удельной поверхностью 4000—5000 см2/г для молибдена и 5000—7000 см2/г для марганца.

Компоненты металлизирующей пасты, взя­тые в заданном соотношении, смешиваются с раствором коллоксилина в изоамилацетате или водно-спиртовый раствор полиамидной смолы. Смешивание компонентов производится в валковой мельнице со стальным барабаном до получения однородной пасты.

Процесс вжигания металлизирующих по­крытий производится в печах с защитной га­зовой средой при температуре 1200—1350 °С с выдержкой при конечной температуре 20—30 мин. Режим вжигания устанавливается опытным путем.

Вжигание покрытия проводится в печах периодического действия или толкательных пе­чах непрерывного действия в увлажненной или азотно-водородной среде при отношении азота к водороду 2:1 или 3:1. Керамические материалы, содержащие в своем составе до­статочное количество стеклофазы (фарфор, стеатит и др.), можно металлизировать па­стами на основе тугоплавких металлов без специальных добавок, а керамические матери­алы, содержащие менее 5 % стеклофазы, не­обходимо металлизировать пастами, в состав которых входят компоненты, образующие жид­кую фазу в процессе вжигания покрытия.

В табл. 13 (см. приложения) приведены составы для ме­таллизации вакуумплотных керамических ма­териалов.

Для увеличения толщины покрытия и об­легчения пайки на молибденовое покрытие методом вжигания или гальваническим путем наносится слой никеля (второе покрытие)./2/

ПРИЛОЖЕНИЯ:

Сырьё

Дробилка

Барабанная мельница

Магнитный сепаратор

Вибрационное сито

Смеситель

Мембранный насос

Пресс-фильтр

Сушка

Бегунковая мельница

Смеситель

Дезинтегратор

Вибросито

Влажное прессование

Сушка

Предварительное прессование

Бегунковая дробилка

Сито

Воздушный классификатор

Сухое прессование

Вакуум-пресс

Бункер

Смеситель

Литьё

Обтачка

Мудштучное прессование

Сушка

Спекание

Механическая обработка

Глазурование

Обжиг

Шлифование

Глазурование (легко-плавкими глазурями)

Контроль

Очистка от песка

Рис. 1. Технологическая схема производства электрокерамических

изделий


Таблица 1. Фазовый состав и основные свойства электрофарфора

Показатель

Фарфор

твёрдый

с повышенным содержанием муллита

кристобалитовый

корундовый

Состав, %

Муллит

25-28

35-48

23-25

10-12

Кремнезем

10-12

1-5

23-25

-

Кристобалит

-

-

20-25

-

Корунд

-

0-5

-

35-40

Стеклофаза

60-62

55-60

28-33

45-50

Основные свойства

Прочность при изгибе, МПа

70

120

110

170-220

Ударная вязкость, кДж/м2

1,5

2,0

2,2

2,5

Электрическая прочность, МВ/м

30

35

35

35

Таблица 2. Основные классы электротехнических материалов соот-ветственно применению

Класс

Применение

Вид керамики

Характерные особенности

1

Изоляторы для ус-тройств высокого и низкого напряжения, низкой частоты

Электрофарфор и глиноземистый фарфор

Хорошие электромеханические свойства, возмож-ность изготовления изоляторов любых размеров

2

Низкочастотные и вы-сокочастотные изоля-торы и конденсаторы малой ёмкости

Стетит, ультрафарфор, корундо-муллитовая керамика, цельзиановая керамика

Небольшое значение εr

3

Конденсаторы высо-кого и низкого напря-жения, высокой и низ-кой частоты

Рутиловая, перовскитовая, титано-циркониевая керамика, стронций-висмутовый титанат, алюминат-лантановая керамика

Высокое и очень вы-сокое значение εr, за-данное или не регла-ментированное зна-чение ТКε

4

Термодугостойкие узлы: искрогаситель-ные камеры, основа-ния нагревательных элементов и проволоч-ных резисторов, изоля-торы в вакуумных приборах

Кордиерит, литий-содержащая, высокоглиноземистая и цирконовая кера-мика

Высокая механи-ческая стойкость при нагреве и стойкость к термоударам

5

Высоконагревостойкие изоляторы

Керамика на основе чистых оксидов алю-миния, магния, бе-риллия и т. д.

Высокие электри-ческие свойства при высокой температу-ре, высокая тепло-проводность

6

Резисторы

Смесь керамики с са-жей или графитом; керамика на основе смешанных кристал-лов оксида цинка и оксидов металлов с переменной валент-ностью

Повышенная и высо-кая электропровод-ность, линейная и нелинейная вольт-амперные харак-теристики

Таблица 3. Огнеупорные глины

Место-рож-дение

Содержание оксидов, %

Потери при прокали-вании, %

SiO2

Al2O3

Fe2O3

CaO

MgO

K2O

Na2O

Часовъяр-ское

49,6-60,74

27,17-36,15

0,77-1,97

0,24-1,12

0,64-1,32

1,42-2,99

0,19-0,54

9,86-7,35

Дружков-ское

47,0-57,0

32,4-37,0

0,81-1,32

0,72-1,38

0,16-0,50

1,18-3,48

11,46-9,50

Торжков-ское

45,5-55,1

28,9-37,3

0,43-2,73

0,46-2,30

0,14-1,81

0,04-1,59

0,24-0,96

17,70-11,06

Таблица 4. Каолины

Место-рож-дение

Вид коалина

Содержание оксидов, %

Поте-

ри при про-кали-вании, %

SiO2

Al2O3

Fe2O3

CaO

MgO

K2O

Na2O

Прося-новское

Нео-бога-щён-ный

65,0-69,7

21,7-26,4

0,84-1,0

0,4-0,7

0,08-0,3

0,27-0,83

-

7,9-4,9

Обо-гащён-ный

45,5-47,4

37,4-39,8

0,3-0,94

0,15-1,3

0,12-0,56

0,15-0,77

0-0,68

14,0-13,2

Глухо-вецкое

Нео-бога-щён-ный

65,3-69,6

22,2-26,2

0,2-0,5

0,32-0,45

-

0,13-0,15

-

8,7-7,9

Обо-гащён-ный

46,0-47,9

37,1-40,4

0,21-0,95

0,13-0,5

0-0,53

0-0,4

0-0,003

13,7-13,1

Кыштым-ское

Нео-бога-щён-ный

69,0

21,1

0,95

0,65

0,32

-

-

6,99

Обо-гащён-ный

45,7-49,2

36,3-38,2

0,5-2,2

0,46-1,6

0,28-0,76

0,39-0,80

0-0,59

13,7-12,1

Балай-ское

Обо-гащён-ный

45,5-51,1

34,2-37,2

0,6-0,8

0,3-0,88

0,1-0,2

-

0,7-0,96

-

Ангрен-ское

Нео-бога-щён-ный

54,6-57,1

30,2-32,3

0,1-0,8

0,7-1,2

0,28-0,3

-

0,28

-

Таблица 5. Кварцевые материалы

Сырьё

Содержание оксидов, %

Потери при прока-лива-нии, %

SiO2

Al2O3

Fe2O3

CaO

MgO

K2O

Na2O

Кварцевый песок

Любе-рецкий

99,5-98,6

0,06-0,8

0,1-0,2

0,1-0,2

0,04-0,1

0,1

-

0,08-0,02

Авдеев-ский

96,6-98,8

2,7-0,7

0,1-0,2

0,2-0,6

0,1-0,2

-

-

0,1-0,3

Талшин-ский

99,3-99,7

0,3-0,2

0,04

0,06

0,03

-

0,04-0,1

0,1-0,4

ГДР

99,7-99,8

0,1

0,01

0,02

0,03

-

-

0,13-0,15

Кварц жильный

Нарын-Кунтин-ский

90,7-99,4

0,4-0,6

0,0-0,6

0,0-0,8

0,0-0,9

2,7-0,0

0,0-0,2

0,26

Таблица 6. Полевой шпат и пегматит

Сырьё

Содержание оксидов, %

Поте-ри при прока-лива-нии, %

SiO2

Al2O3

Fe2O3

CaO

MgO

K2O

Na2O

Пегматит

Глубо-чан-ский (Тока-ров-ский)

71,3-75,4

14,8-16,2

0,4-0,6

0,6-1,2

0,1-0,4

4,6-5,3

3,6-4,5

1,0-1,5

Прила-дож-ский

65,6-77,7

13,1-19,3

0,1-1,0

0,6-2,3

0-0,7

4,1-5,9

3,6-5,1

0,8-1,6

Елисе-евский

70,7-75,6

13,3-17,1

0,3-0,8

0,5-1,3

0-0,2

3,0-4,9

2,9-5,3

0,6-1,5

Алапаев-ский

65,5-74,4

13,9-19,7

0,2-0,4

0,2

0,1

7,9-12,0

1,9-3,5

-

Полевой шпат

Норвеж-ский

65-74,7

19,2-20,2

0,1-0,3

-

0,2

11,1-12,8

3,3-3,7

3,4-3,5

Применя-емый в США

65-68,6

17,3-19,9

0,1-0,3

0-0,5

0,03

10,5-12,0

2,7-3,3

3,6-3,9

Применя-емый в Швеции

64,0

19,4-

0,1

0,08

-

14,0

1,9

7,3

Применя-емый в ФРГ

68,5

17,6

0,3

0,2

0,1

10,6

0,7

15,8

Таблица 7. Циркониевое сырьё

Сырьё, место-рожде-ние

Содержание оксидов, %

Потери при про-калива-нии, %

SiO2

K2O

TiO2

ZrO2

Al2O3

Fe2O3

CaO

MgO

Бадделе-ит, Бразилия

0,69-0,19

-

-

96,84-98,9

0,13

0,37-0,82

0,21-0,06

-

0,98-0,28

Циркон-фавас светло-коричне-вый, Бразилия

15,35

-

0,51

81,64

0,9

1,00

-

-

0,63

Циркон-фавас аспидно-серый, Бразилия

2,05

-

0,56

92,87

0,7

3,50

-

-

0,52

Циркон-фавас чистый, Бразилия

0,48

-

0,48

97,19

0,4

0,92

Сле-ды

-

0,38

Циркон, Шри Ланка

33,86

-

-

64,25

-

1,08

-

-

-

Циркон, Швеция

32,44

-

-

65,76

-

0,42

0,09

-

0,46

Циркон, Австра-лия

30,00

-

2,08

65,42

1,2

0,44

0,14

0,22

-

Циркон, Россия (Ильмен-ские горы)

34,79

-

0,91

57,95

2,88

1,94

1,85

-

0,15

Циркон, Россия (Вишнё-вые горы)

32,63

0,48

1,22

63,53

0,37

0,88

0,61

0,07

0,35

Циркон, Россия (Жданов)

34,09

1,08

Нет

59,93

1,4

1,44

0,12

-

-

Таблица 8. Тальки

Тальк

Содержание оксидов, %

Потери при прока-лива-нии, %

SiO2

Al2O3+TiO2

Fe2O3

CaO

MgO

Онот-ский

60,22-62,28

0,01-1,63

0,41-1,09

Следы-0,5

31,02-32,99

5,9-4,92

Шабров-ский (флотиро-ванный)

57,66-58,65

Следы-0,87

2,81-3,65

Следы-0,19

31,95-32,5

7,06-6,25

Миасский

55,3-56

0,43-2,14

7,3-8,1

0,19-1,1

28,5-29,5

5,6-5,3

Алгуй-ский

68,4

0,25

0,27

0,08

25,9

3,8

Кирги-тейский

60,7-63,8

0,04-0,09

0,09-0,3

0,36

31,8

4,6-4,7

Таблица 9. Показатели диоксида титана различных модификаций

Моди-фикация

Сингония

Кажу-щаяся плот-ность, кг/м3

Твёр-дость по Мо-осу

Показатель прелом-ления света по двум направ-лениям

Тем-пера-тура пере-хода в ру-тил, 0С

TKl, 10-7 К-1

εr

Ng*

Np**

Анатаз

Тетраго-нальная

3900

5-6

2,55

2,49

915

0,47-0,82

31

Брукит

Ромби-ческая

3900-4000

5-6

2,70

2,58

753

1,45-2,29

78

Рутил

Тетраго-нальная

4200-4400

6

2,90

2,61

>1000

0,71-0,92

89* 173**

* Максимальное значение

Характеристики

Тип файла
Документ
Размер
294 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6926
Авторов
на СтудИзбе
266
Средний доход
с одного платного файла
Обучение Подробнее
{user_main_secret_data}