Slonike (722542), страница 2
Текст из файла (страница 2)
Х(nТ)
N-1 N
2) Дисперсия.
Дисперсия сигнала для непрерывной случайной величины определяется так:
95%
3) Авто корреляция.
Корреляция – связь между нынешним и предыдущим состоянием.
- среднее значение или математическое ожидание.
Авто корреляционная функция является мерой связей между случайными последовательностями. Если значение r(m)=0, то нет никакой связи межу случайными последовательностями.
4) Спектральная плотность или мощность стационарной случайной последовательности.
Спектральная плотность сигнала ----- есть средняя мощность последовательности ----- , приходящейся на достаточно узкую полосу частот.
Эта функция связана с преобразованием Фурье, и имеет следующий вид:
Тема: Виды окон анализа.
Проблемы:
1) Для того, чтобы обрабатывать сигнал в начале он превращается в дискретном виде (необходимо решить проблему точности при вставлении сигнала, как по частям, так и по уровню).
2) Выбор ширины окна анализа сигнала и типа окна анализа. Ширина окна берется исходя из периодичности сигнала. Если ширина окна близка или в точности совпадает с периодичностью сигнала, то это наиболее оптимальный способ выбора ширины окна.
Д
ля речевых сигналов ширина окна должна быть равна периоду основного тона сигнала.
Т0
Тип окна - используются несколько типов:
а) прямоугольное окно.
Частотная характеристика этого окна выглядит так:
б) Окно Хэмминга.
Окно Хэмминга отличается от прямоугольного окна и описывается следующей формулой:
Достоинства:
1) Она сглаживает боковые вклады в результат обработки.
2) Ширина сдвига окна меньше ширины всего окна.
в) Окно Кайзера.
I0 – функция Бегеля
Тема: Расчеты цифровых фильтров.
Случайные сигналы можно исследовать:
2. В области частот.
Этот способ позволяет найти компоненты периодических сигналов, которые формируют или образуют случайные сигналы.
а) Преобразованием Фурье.
Сигналы можно разделить на 3 гармоники.
б) С помощью полосовых фильтров.
2. Во временной области.
Исследование его характеристики во времени.
3. С помощью линейного предсказания.
Это авто корреляционный способ. Он использует закономерность или информацию о том, как соседние отсчеты взаимосвязаны между собой.
Для того, чтобы исследовать сигналы в частотной области с помощью программ, которые моделируют цифровые фильтры, необходимо, заранее делать расчет цифровых фильтров.
Порядок расчета цифровых фильтров следующий:
1) Решается задача аппроксимации с целью определения коэффициента фильтра, при котором фильтр удовлетворяет заданному требованию.
2) Выбирается конкретная схема построения фильтра и квантования, найденных значений его коэффициентов в соответствии с фиксированной длиной слова.
3) Делается квантование переменных величин фильтра, т.е. выбор длины слова входных выходных и промежуточных переменных.
4) Проверяется методом моделирования, удовлетворяет ли полученный фильтр заданным требованиям. Если на этом этапе фильтр не удовлетворяет заданным требованиям, то предыдущие 2 и 3 этапы повторяются.
Бывают 2 типа фильтров:
а) Нерекуррентные.
б) Рекуррентные.
Формулы определения фильтров.
Другую характеристику цифрового фильтра можно записать следующим образом:
Схема фильтра будет следующая:
X(n) W(n) a0 Y(n)
Схема фильтра состоит из набора элементов задержек, выходной сигнал которых
умножается на определенный коэффициент.
Тема: Линейное предсказание сигналов.
Один из способов обработки сигналов является: использование модели линейного предсказания. Суть состоит в том, что следующий отчет сигнала является (вычисляется), используя предыдущие отчеты.
---- реальный дискретный сигнал.
---- моделирование дискретных сигналов.
С другой стороны:
Минимизируем функцию.
ak – коэффициент линейного предсказания.
Решая эту систему, находим коэффициент а
- Это Ковариационный метод.
- Авто корреляционный метод.
Модель такая: минимизируется ошибка следующим образом:
а – коэффициент линейного предсказания.
R – авто корреляционная матрица.
r – коэффициенты матрицы.
Эта модель сводится к модели фильтрации сигналов и будет:
S(Z) - Z–преобразование сигнала
A(Z) – фильтр (анализатор) сигнала
Любая модель линейного предсказания приводит к ошибкам предсказания. В случае, если мы используем авто корреляционный метод, тогда ошибка предсказания будет:
Тема: Цифровая обработка сигналов.
-
Достоинства методов цифровой обработки сигналов.
-
Линейные и дискретные системы и их свойства.
-
Цифровые фильтры и способы их описания.
-
Фильтры с конечно импульсными характеристиками.
-
Фильтры с бесконечно импульсными характеристиками.
-
Передаточные характеристики фильтров.
-
Нули и полюса фильтров.
-
Фильтры первого порядка с одним нулем и с одним полюсом.
-
Фильтры второго порядка с нулями и плюсами.
-
Топология фильтров.
I. Достоинства ЦОС.
-
Экономное использование средств для обработки сигналов.
-
Гибко использовать программные средства для обработки сигналов различными методами.
-
Цифровые способы обработки сигналов не зависят от внешних условий.
-
Цифровые способы позволяют моделировать любые устройства с необходимыми характеристиками.
II. Цифровая обработка сигналов использует линейные дискретные системы, которые наиболее проще описывают те процессы, которые протекают при обработке сигналов.
Свойства:
1. Однородности:
ЛС
X Y 2
. Суперпозиции: X1
Если минимальные системы подчиняются свойствам выше, тогда их работу можно описать с помощью измерения импульсных откликов на входах и выходах этих систем.
ЛС
Исходя из этих свойств, входной сигнал Х(n) можно представить как сумму отчетов дискритизированного сигнала умноженную на…
III. Цифровые фильтры.
Фильтры можно получить, используя линейные комбинации предыдущих и текущих отчетов сигналов.
С точки зрения характеристик фильтра на единичный конечный сигнал, имеются фильтры с конечно импульсными характеристиками (КИХ) и с бесконечно импульсными характеристиками (БИХ).
Z-1
IV. Простейший пример КИХ.
Схема этого фильтра выглядит следующим образом:
X(n) Y(n)
Фильтр и КИХ в общем виде описывается следующим образом:
X(1)
Z-1
Z-1
Z-1
Z-1
Данный фильтр является неимпульсивным, и значение выходного сигнала зависит только от значений входного сигнала и от предыдущих значений.
V. Фильтры с БИХ.
Фильтры с БИХ математически списываются следующим образом:
для g=1
тогда импульсный отклик будет rn.
Этот тип отклика называется экспонициальный.
Если r
0, тогда даже при нулевом значении входного сигнала, выходной сигнал не будет нулевым.
Если r < 1, тогда выходное значение сигнала на выходе фильтра будет осцелировать.
Если r > 1, выходное значение может бесконечно расти, то тогда этот фильтр будет неустойчивый, и приходим к выводу, что эти фильтры называются «с бесконечно импульсными характеристиками».
Схема такого фильтра выглядит следующим образом:
X(n) Y(n)
Этот фильтр еще называется рекуррентный фильтр с БИХ первого порядка.
Схема фильтра n – го порядка выглядит следующим образом:
X(n) Y(n)
Общая форма фильтров:
Если использовать Z–преобразования, тогда фильтр можно описать следующей формулой:
VI. Передаточные функции фильтров.
Передаточные функция фильтра называется отношением выходного сигнала на входной сигнал.
С учетом формул линейного фильтра получаем:
Порядок фильтра определяется от N или М.
VII. Нули и полюса фильтров.
Если исследовать передаточную характеристику фильтров, то можно обнаружить два экстремальных варианта:
-
Числитель = 0.
-
Знаменатель с 0.
-
Если числитель = 0, тогда передаточная характеристика равна 0 и можно получить нулевые значения фильтра. Полоса затухания – нулевой фильтр.
-
Если же знаменатель =0, тогда передаточная характеристика фильтра бесконечная и тогда получаем полюса фильтров или резонансные частоты фильтров.
VIII. Фильтр 1-го порядка с одним нулем и с одним полюсом.
Самый простой фильтр, который имеет один полюс и один нуль можно описать следующим образом:
Передаточная характеристика этого фильтра будет следующей:
- и этот фильтр имеет один нуль.
Схема фильтра выглядит следующим образом:
X(n) g Y(n)
Если рассматривать частотные характеристики этого фильтра, то они будут выглядеть так:
Фильтр с одним полюсом:
Частотные характеристики этого фильтра выглядят следующим образом:
X(n) Y(n)
A A















