kursovik (722508), страница 2
Текст из файла (страница 2)
Id – среднее значение тока нагрузки, в расчётах берётся наибольшее значение тока нагрузки (при α = αмин), т.е. Id = Idн.
I2 = 1,1 * √(2/3)* 75 = 67 А.
I3 = 2√2 * 300 mA = 850 mА.
3. Действующее значение тока первичной обмотки трансформатора
I = Ki * Kt1 * Id / Kтр ,
где Kt1 - коэффициент схемы, определяющий соотношение между выпрямленным током и переменным током первичной обмотки трансформатора;
Kтр – коэффициент трансформации трансформатора ;
Kтр = U1 / U2;
U2 – фазное напряжение первичной обмотки трансформатора.
I = 1,1 * √(2/3) * 75 / 1,5 = 44,6 А.
4. Расчётная типовая мощность трансформатора
SТР = KT * Ud * Id ,
где KT – коэффициент схемы.
SТР = 1,05 * 250 * 75 = 19687,5 вт.
Выбор вентилей
1. Среднее значение тока вентиля
Iв = K тв * Id
где KTB - коэффициент схемы.
Iв = 1/3 * 75 = 25 А.
2. Классификационное значение предельного тока вентиля при заданном типе охладителя, указываемое в каталогах, определяется по формуле
In0 = Kэт * Iв
где Кэт - коэффициент запаса по току, выбираемый исходя из надежности работы вентиля и с учетом пусковых токов.
In0 = 1,25 * 25 = 31,25 А.
3. Максимальная величина обратного напряжения, прикладываемого к вентилю, определяется по формуле
UВМ = U2 * KНВ ,
где КНВ - коэффициент схемы ;
UВМ = 148 * √6 = 363 В.
Повторяющееся напряжение, определяющее класс вентиля, выбирается с запасом :
UП ≥ UВМ / Kзн ,
где Кзн - коэффициент запаса по напряжению.
UП ≥ 363/ 0,8 = 453 В
Выберем по справочнику прибор со следующими параметрами:
-
Тип прибора – ТО132-40-6
-
Максимально допустимый действующий ток в открытом состоянии – 40 А.
-
Повторяющееся импульсное напряжение в закрытом состоянии: наибольшее мгновенное значение напряжения в закрытом состоянии, прикладываемое к тиристору, включая только повторяющиеся переходные напряжения – 600 В.
-
Ударный неповторяющийся ток в открытом состоянии: наибольший ток в открытом состоянии, протекание которого вызывает превышение максимально допустимой температуры перехода, но воздействие которого за время службы тиристора предполагается редким, с ограниченным числом повторений – 750 А.
-
Отпирающий постоянный ток управления: наименьший постоянный ток управления, необходимый для включения тиристора – 150 мА.
-
Отпирающее импульсное напряжение управления – 2,5 В.
-
пороговое напряжение (напряжение отсечки) - 1,15 В.
-
динамическое (дифференциальное) сопротивление прямой вольтамперной характеристики вентиля в открытом состоянии - 6 Ом.
-
общее установившееся тепловое сопротивление - 0,3 °С/Вт
Расчет температуры нагрева вентиля
1 Температура полупроводниковой структуры Тр„п зависит от мощности потерь , образующихся в полупроводниковой структуре.
В нормальных режимах работы на частотах не более 200Гц потери в основном обусловлены протеканием прямого тока прибора. Эти потери составляют 95+98 % от полных потерь в приборе и определяются выражением
ΔP = U0 * IB + Rд * Kф2 * IB2,
где U0 - пороговое напряжение (напряжение отсечки), В;
IB - среднее за период значение прямого тока вентиля. А;
Rд - динамическое (дифференциальное) сопротивление прямой вольт-амперной характеристики вентиля в открытом состоянии , Ом ;
Кф = Iэф / IB - коэффициент формы тока , протекающего через прибор;
Iэф и IB - среднее по модулю и эффективное значение прямого тока, протекающего через вентиль .
В этом случае дополнительными потерями обычно пренебрегают .
ΔP = 1,15 * 25 = 28,75 Вт.
2 Эквивалентная температура полупроводниковой структуры определяется выражением
Tp-n = Tc + ΔP * RT
где Тс - температура окружающей среды (или охлаждающего агента при принудительном охлаждении) , °С;
RT - общее установившееся тепловое сопротивление,
(зависит от типа охладителя и интенсивности охлаждения), °С/Вт.
Tp-n = 60 + 28,75 * 0,3 = 69°
выполняться условие нормальной работы прибора
Тр-п ≤ [ Тр-п ]
69° ≤ 125°
Регулировочная характеристика преобразователя
Регулировочная характеристика преобразователя представляет собой зависимость среднего значения выпрямленного напряжения от угла открывания вентилей а. Вид регулировочной характеристики определяется типом нагрузки (индуктивная или активная) и схемой силовой части преобразователя .
В идеальном преобразователе при чисто индуктивной нагрузке (Lн = ∞) изменение напряжения нагрузки от максимального значения Udo до нуля происходит при изменении угла открывания тиристоров в пределах от нуля до 90 эл. град, Теоретическая регулировочная характеристика таких преобразователей описывается уравнением ~
Uda=Udo*cosα,
где Udo — среднее значение выпрямленного напряжения при α=0.
При реальной активно-индуктивной нагрузке (LН≠α ) в таких преобразователях, если α > 90 эл. град., наступает режим прерывистого тока и средние значения тока и напряжения нагрузки не равны нулю.
При чисто активной нагрузке (LН = 0) диапазон регулирования угла открывания вентилей и вид регулировочной характеристики преобразователя меняются.
Теоретическая регулировочная характеристика при чисто активной нагрузке описывается уравнениями:
для трехфазной мостовой схемы
Uda = Udo*cos α при 0°< α <60°;
Uda = Udo*[ l+cos(600 + α)] при 60°< α < 120.
Регулировочная характеристика
Uф
Ua
Ub
Uc
t1
t2
t3
120 о
Uу1
Uу2
Uу3
120 о
VS1
VS2
VS3
VS1
VS1
VS2
VS3
VS1
Uу4
Uу5
Uу6
Ud
id
< 30
> 30
Расчёт системы управления тиристорами
Выберем по справочнику прибор со следующими параметрами:
-
Тип прибора – КТ616А
-
Максимальная рассеиваемая мощность коллектора – 0,3 вт.
-
Максимальное напряжение коллектор-эмиттер - 20 В.
-
Максимальное напряжение коллектор-база - 20 В.
-
Максимальное напряжение эмиттер-база - 4 В.
-
Максимальный постоянный ток коллектора - 400 мА.
-
Максимальный импульсный ток коллектора - 600 мА.
-
Статический коэффициент передачи тока в схеме с общим эмиттером - 40
-
Напряжение насыщения коллектор-эмиттер при постоянном токе базы - 0,6 В.
-
Граничная частота коэффициента передачи тока - 100 МГц.
Минимальное напряжение на коллекторе транзистора снижается до значения
Uк.мин = Uд.см + Uке.нас
Uк.мин = 0,7 + 0,6 = 1,3 В.
Значение резистора, задающего ток управления тиристором, определим по формуле
Rx2 = (Uп - Uк.мин) / Iу
Rx2 = (10 – 1,3) / 200 мА = 40 Ом.
Для обеспечения ключевого режима работы транзистора минимальный ток базы определим по формуле
IБ > IК / β
IБ > 200 мА / 70 = 2,9 мА.
Rx4 – резистор, задающий начальный ток на диоде смещения
Rx4 = Uп / Iд
Rx4 = 10 / 0,01 = 1 кОм.
Rx3 – резистор, обеспечивающий быстрое рассасывание электронов в базе транзистора
Rx3 = Uсм / IКБ0
Rx3 = 2 / 0,1 мА = 20 кОм.
Максимальное значение резистора, ограничивающего ток управляющего импульса, поступающего на базу по формуле
Rx1 < R2 / 10
Rx1 < 20 / 10 = 2 кОм.
Выходная нагрузочная способность микроконтроллера ограничивает минимальное значение резистора, ограничивающего ток управляющего импульса, поступающего на базу, рассчитываемое по формуле
Rx1 > U / I
Rx1 > 5 / 20 мА = 250 Ом.
Значение резистора, удовлетворяющее обоим условиям выберем равным 1 кОм.
Длину управляющих импульсов определим по формуле
tи ≥ tвкл=100 мкс.
Расчёт параметров компонентов схем питания.
Подберём диод VD1 по максимальному току, прямому току > 800 мА.
Выберем по справочнику прибор со следующими параметрами:
-
Тип прибора – Д302
-
Среднее за период значение прямого тока диода - 1 А.
-
Прямое обратное напряжение диода - 200 В.
-
Значение максимально допустимой частоты - 5 кГц.
Определим ёмкость Фильтрующего конденсатора С1 по длине периода RC – фильтра
5 /RC < f
5/ (20 * 6300 мкФ) < 50 Гц
Выберем электролитический конденсатор: 6300 мкФ x 16 В.
Питание для контроллера построим на стабилизаторе КР142ЕН5А и конденсаторах С4 : 0,1 и С5 100x10.
Выбор микроконтроллера и расчёт параметров его периферийных устройств
Требования, предъявляемые к микроконтроллеру:
-
Наличие внутренней памяти программ и ОЗУ.
-
Наличие EEPROM (Электрически перепрограммируемая память) – для хранения при отключении питания введённых значений уровня регулируемого напряжения и режима работы;
-
Наличие сторожевого таймера для обеспечения гарантированно надёжной работы микроконтроллера.
-
Наличие внутрисхемно реализованного АЦП.
-
Наличие USART приёмо-передатчика для возможности управления и контроля на расстоянии или с помощью компьютера.
Для решения этой задачи наиболее подходящим является микроконтроллер PIC16F873 фирмы Microchip со следующими параметрами:
-
35 команд;
-
все команды выполняются за 1 цикл (20 нс при 20 Мгц), кроме команд перехода, выполняющихся за 2 цикла
-
тактовая частота 0 ... 20 МГц, цикл команды от 20 нс;
-
Флеш память программ 4х14 Кбайта
-
аппаратные прерывания от 13 источников;
-
8-уровневый аппаратный стек;
-
прямой, непосредственный, косвенный и относительный режимы адресации
-
3 таймер/счётчик с предварительным делителем.
-
Встроенное электрически перепрограммируемое ПЗУ данных 128 бит – типовое число циклов перезаписи – 1000000
-
Схема запуска по включению питания
-
Таймер запуска генератора
-
Сторожевой таймер с отдельным встроенным RC-генератором
-
Бит защиты считывания памяти программ
-
Режим пониженного энергопотребления
-
Программируемый выбор генератора
-
Внутрисхемное программирование через 2 вывода
-
Микропотребляющая высокоскоростная КМОП технология
-
Полностью статическое устройство
-
Широкий диапазон питания: 2.0...6.0 В
-
Высокотоковые входы-выходы 25 мА
-
Низкое энергопотребление: <2 мА (5 В, 4 МГц), 15 мкА типовой (2 В, 32 кГц), < мкА типовой в режиме пониженного энергопотребления при 2 В
-
Модуль компаратора/накопителя/ШИМ
-
Последовательные порты SPI / I2C / USART
-
A/D преобразователь (10 разрядов) 5 каналов
Наминал резисторов R4 – R11, задающих ток через сегменты равным 2,5 мА
60>2>














