work_text (722410), страница 5
Текст из файла (страница 5)
высокую надёжность, так как отказ транзистора в одном плече ведёт лишь к уменьшению Кр на 6 дБ при сохранении работоспособности усилителя. Кроме того, балансные усилители легко каскадируются, менее подвержены самовозбуждению, не требуют применения развязывающих ферритовых устройств, дополнительно ограничивающих ширину полосы рабочих частот.
К недостаткам балансного усилителя следует отнести ухудшение его чувствительности из-за потерь на отражение (входной КСВН моста в полосе не лучше 1,5) и диссипативных потерь в высоко-омных линиях мостов.
3. Разработка функциональной схемы СВЧ тракта
3.1. Характеристика элементов приёмного тракта
Разработку функциональной схемы приёмного тракта произведём на основании выбран-ной супергетеродинной структурной схемы приёмника с двойным преобразованием частоты. Функциональная схема тракта приёма, должна содержать следующие части:
- антенну;
- диплексер;
- МШУ;
- полосно-пропускающие фильтры ;
- усилители промежуточной частоты ;
- смесители.
Рассмотрим более подробно элементы тракта СВЧ, которые используются для построения земной станции.
Антенна представляет собой параболический рефлектор диаметра D = 1.2 м и облучатель для приёма сигналов с круговой поляризацией правого вращения.
Отраженный рефлектором сигнал идет на облучатель. Его назначение – передать приня-тую антенной энергию ЭМВ спутника по волноводу к приёмнику.
Облучатель – один из важнейших узлов антенной системы, поэтому к нему предъяв-ляются определенные требования:
1) диаграмма направленности должна быть осесимметричной и без боковых лепестков;
2) облучатель не должен сильно затенять параболическую антенну, так как это приводит к
искажению её диаграммы направленности и снижению коэффициента использования поверхности параболоида вращения.
Облучателями параболических антенн служат слабонаправленные антенны. Это могут быть рупоры, щелевые антенны, спирали, диэлектрические антенны и др.
Волновод круглого сечения в большей степени удовлетворяет требованиям, предъявляемым к облучателям антенных систем – диаграмма направленности осесимметрична, в отличие от пирамидального (прямоугольного) волновода.
Электромагнитная волна, распространяющаяся в пространстве от передающей антенны спутника до антенны земной станции, характеризуется поляризацией, т. е. ориентацией вектора
напряжённости электрического поля Е относительно поверхности Земли. Земная станция принимает со спутника «Экспресс-А» сигнал с круговой поляризацией правого вращения, а излучает сигнал с круговой поляризацией левого вращения.
C выхода облучателя сигнал поступает на диплексер, который выполнен на волноводе круглого сечения. Диплексер осуществляет разделение приёмного и передающего трактов, основанное на поляризационной селекции электромагнитных волн.
Диплексер должен удовлетворять требованию по подавлению сигнала передатчика, просачивающегося в приёмный тракт до необходимого уровня.
Ниже приведены типичные параметры диплексоров С – диапазона:
- развязка между приёмом и передачей: не менее 110 дБ;
- кроссполяризация: не менее – 40 дБ;
- рабочий диапазон частот:
а) на приём: 3600...4200 МГц;
б) на передачу: 5,925...6,525 МГц;
- потери: не более 0,25 дБ;
- диаметр волновода: D = 58 мм.
С выхода диплексора через сигнал поступает на вход Y–циркулятора, представляющего собой симметричное H-плоскостное сочленение трёх прямоугольных волноводов, в центр которого помещён ферритовый цилиндр.
Циркулятор – это устройство, в котором движение потока энергии происходит в строго определённом направлении, зависящем от ориентации внешнего магнитного поля, намагничи-вающего феррит.
Принцип работы циркулятора поясним с помощью рис. 3.1.
Рис. 3.1. Y-циркулятор
Волна Н10, поступающая на вход циркулятора по волноводу 1, преобразуется в области феррита в две волны, которые обегают диск навстречу друг другу, одна по часовой стрелке, другая против неё. Направления вращения вектора
образовавшихся волн противоположны (в точках А и В), поэтому их фазовые скорости при подмагничивании феррита однородным полем
Н0, различны. Параметры феррита и напряжённости поля подбирают так, чтобы обе волны приходили к волноводу 3 в противофазе. При этом электромагнитная энергия будет поступать из волновода 1 в волновод 2 и не попадать в волновод 3. Аналгичным образом поясняется прохождение энергии из плеча 2 в плечо 3, из плеча 3 в плечо 1.
В данном приёмном тракте циркулятор будет использоваться в качестве вентиля для устранения отражённой от входа полосового фильтра волны, а также для согласования выхода диплексора с волноводным входом полосового фильтра.
Рабочая полоса волноводных Y–циркуляторов достигает 30%, потери в прямом направ-лении составляют 0,15...0,5 дБ, в обратном – свыше 20...30 дБ.
С выхода циркулятора сигнал поступает на вход волноводного полосового фильтра.
В таблице 3.1 приведены справочные данные волноводных полосовых фильтров, выпускаемых ОАО „Радиофизика”, которые применяются во входных волноводных цепях земных станций спутниковых систем связи С–диапазона. Фильтры выпускаются в четырех модификациях: WF–12–1, WF–12–2, WF–12–3, WF–12–3В. Сечение волноводных входов фильтра 58х25 мм.
Таблица 3.1. Справочные данные полосовых фильтров
| Параметр | Диапазон частот, ГГц | WF-12-1 | WF-12-2 | WF-12-3 | WF-12-3B |
| Потери, дБ | 3,6 – 4,2 | 0,15 | 0,15 | 0,15 | 0,15 |
| Подавление, дБ | 5,925–6,525 | 70 | 85 | 100 | 100 |
МШУ предназначен для усиления до необходимого уровня слабых входных сигналов, принимаемых антенной. В диапазоне частот 3600…4200 МГц сигнал с выхода полосового фильтра поступает на волноводный вход МШУ, а далее через волноводно-микрополосковый переход на вход первого каскада. МШУ выполнен по гибридно-интегральной технологии. Усиленный сигнал с волноводного выхода МШУ подаётся на вход первого смесителя.
3.2. Определение номиналов промежуточных частот и частот гетеродина
В качестве частоты первого преобразования на СВЧ выбирают частоту, лежащую в диапазоне 0,8… 2 ГГц, а для второго преобразования – стандартную частоту 70 МГц.
Первый смеситель осуществляет преобразование сигналов из диапазона 3600…4200 МГц на промежуточную частоту 925 МГц. В качестве первого смесителя выберем двухдиодный балансный смеситель (БС) на 3-х децибельных мостах. Основным преимуществом БС является возможность фазового подавления амплитудных шумов гетеродина на 15…30 дБ, в следствие
чего коэффициент шума смесителя снижается на 2…5 дБ, а при большом уровне шумов гетеродина – на 5…10 дБ. Кроме того, благодаря подавлению в балансной схеме чётных гармоник гетеродина уровень побочных продуктов преобразования меньше – повышаются помехоустойчивость и динамический диапазон. Потери преобразования такого смесителя составляют 5…8 дБ, а коэффициент шума 7…10 дБ.
Используя частотный план стволов спутника «Экспресс-А», изображённый на рис. 3.2. определим диапазон перестройки и шаг сетки частот 1-го гетеродина Г1.
Рис. 3.2. Частотный план стволов спутника «Экспресс - А»
Как видно из рисунка, несущие частоты 12 стволов разнесены по частоте на величину 50 МГц. Следовательно шаг сетки частот гетеродина составит
МГц.
Частоты перестройки гетеродина находятся из соотношений:
где
– максимальное значение несущей частоты. В данном случае
МГц;
– минимальное значение несущей частоты. В данном случае
МГц;
МГц – выбранное значение промежуточной частоты первого преобразования.
Получим:
Таким образом первый гетеродин должен перестраиваться в диапазоне частот
МГц с шагом
МГц.
Количество фиксированных частот гетеродина составит:
Таким образом, перестраивая гетеродин, на промежуточную частоту
можно перенести любой из 12-ти стволов.
С коаксиального выхода первого смесителя преобразованный сигнал поступает на поло-совой фильтр. Полосовой фильтр осуществляет выделение полосы частот стволов
МГц, который был преобразован на промежуточную частоту 925 МГц и подавление
комбинационных составляющих первого преобразования частоты. В качестве полосового фильтра можно использовать монолитный твердотельный фильтр из высококачественной термостабильной керамики, формирующий АЧХ частотного ствола с потерями не более 1 дБ.
Первый усилитель промежуточной частоты выполняет функцию усиления выделенного потока данных шириной
МГц на средней частоте 925 МГц.
Второй смеситель осуществляет второе преобразование частоты, а именно перенос сигнала с частоты
МГц на стандартную частоту второго преобразования
МГц. В качестве второго смесителя выберем БС, выполненный в интегральном исполнении на ДБШ. При этом частота 2-го гетеродина будет равна:















