conspekt (718406), страница 6

Файл №718406 conspekt (А.А. Ивин Теория аргументации) 6 страницаconspekt (718406) страница 62016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

Дедуктивная аргументация применима во всех областях рассужде­ния и в любой аудитории.

Удельный вес дедуктивной аргументации в разных областях знания существенно различен. Так, она очень широко используется в матема­тике и математической физике и эпизодически — в истории или фи­лософии.

В зависимости от того, насколько широко применяется дедуктив­ная аргументация, все науки принято делить на дедуктивные и индук­тивные. В дедуктивных науках используется по преимуществу или даже единственно дедуктивная аргументация. В индуктивных такая аргумен­тация играет лишь заведомо вспомогательную роль, а на первом месте стоит эмпирическая аргументация, имеющая индуктивный, вероят­ностный характер. Типично дедуктивной наукой считается математи­ка, образцом индуктивных наук являются естественные науки.

Деление наук на дедуктивные и индуктивные, широко распростра­ненное еще несколько десятилетий назад, сейчас во многом утратило свое былое значение. Оно ориентировано на науку, рассматриваемую в статике, прежде всего как систему надежно установленных истин..

Неясность и неточность понятия доказательства. Понятие дедукции является общеметодологическим. В логике ему соответствует понятие доказательства.

Доказательство обычно определяется как процедура обоснования ис­тинности некоторого утверждения путем приведения тех истинных ут­верждений, из которых оно логически следует.

Приведенное определение включает два центральных понятия ло­гики: истина и логическое следование. Эти понятия нельзя назвать в достаточной мере ясными, и, значит, определяемое через них понятие доказательства также не может быть отнесено к ясным.

Многие наши утверждения не являются ни истинными, ни ложны­ми, лежат вне «категории истины»: требования, предостережения и т.п. Они указывают, какой данная ситуация должна стать, в каком направ­лении ее нужно преобразовать. Если от описаний мы вправе требовать, чтобы они были истинными, то удачный приказ, совет и т.д. мы характеризуем как эффективный или целесообразный, но не как истин­ный.

В стандартном определении доказательства используется понятие истины. Доказать некоторый тезис — значит логически вывести его из других, являющихся истинными положений. Но есть утверждения, не связанные с истиной. Очевидно также, что, оперируя ими, нужно быть и логичным, и доказательным.

В связи с этим встает вопрос о существенном расширении понятия доказательства: оно должно охватывать не только описания, но и ут­верждения типа оценок и норм. Но задача переопределения доказа­тельства пока не решена ни логикой оценок, ни логикой норм, и по­нятие доказательства остается не вполне ясным по своему смыслу'.

Отметим далее, что не существует единого понятия логического следования.

Это понятие определяется через закон логики: из утверждения (или системы утверждений) А логически следует утверждение В в том и толь­ко в том случае, когда выражение «если А, то В» представляет собой закон логики.

Данное определение — только общая схема бесконечного множе­ства возможных определений. Конкретные определения логического следования получаются из нее путем указания логической системы, задающей понятие логического закона. Логических же систем, пре­тендующих на статус закона логики, в принципе бесконечно много.

Образцом доказательства, которому в той или иной мере стремятся следовать во всех науках, является математическое доказатель­ство. «Нигде нет настоящих доказательств, — писал Б. Паскаль, — кроме как в науке геометров и там, где ей подражают» (под «геомет­рией» Паскаль имел "в виду, как это было обычным в его время, всю математику).

Содержание понятия доказательства не является в достаточной мере определенным, круг тех рассуждений, которые можно назвать доказательствами, не имеет сколько-нибудь четко очерченной границы. Это означает, что понятие «доказательство» является одновременно и неясным, и неточным. В этом плане оно подобно таким понятиям, как «язык», «игра», «пейзаж» и т.д.

§ 2. Системная аргументация

Сущность системной аргументации.

Системная аргументация — обоснование утверждения путем вклю­чения его в качестве составного элемента в кажущуюся хорошо обосно­ванной систему утверждений, или теорию.

Подтверждение следствий, вытекающих из теории, одновременно подкрепляет саму теорию. С другой стороны, теория сообщает выдви­нутым на ее основе положениям определенные импульсы и силу и тем самым содействует их обоснованию. Утверждение, ставшее элементом теории, опирается уже не только на отдельные факты, но во многом также на широкий круг явлений, объясняемых теорией, на предсказа­ние ею новых, ранее неизвестных эффектов, на связи ее с другими теориями и т.д. Анализируемое положение, включенное в теорию, по­лучает ту эмпирическую и теоретическую поддержку, какой обладает теория в целом.

Ограниченность сомнения. Сомнение, касается не изолированного предложения, но всегда некоторой ситуа­ции, в которой я веду себя определенным образом.

Согласно Витгенштейну, эмпирические предложения могут быть в некоторых ситуациях проверены и подтверждены в опыте. Но есть си­туации, когда они, будучи включены в систему утверждений, в кон­кретную практику, не проверяются и сами используются как основание для проверки других предложений. Так обстоит дело в рассмотренном выше примере. «Меня зовут Б.П.» — эмпирическое предложение, ис­пользуемое как основание для проверки утверждения «Все письма ад­ресованы мне». Однако можно придумать такую историю («практику»), когда мне придется на базе других данных и свидетельств проверять, зовусь ли я Б.П. В обоих случаях статус эмпирического предложения зависит от контекста, от той системы утверждений, элементом которой оно является. Вне контекста бессмысленно спрашивать, является ли данное предложение эмпирически проверяемым или я его твердо при­держиваюсь.

Помимо эмпирических Витгенштейн выделяет методологические предложения. Они тоже случайны в том смысле, что их отрицание не будет логическим противоречием. Однако они не являются проверяе­мыми ни в каком контексте. Внешнее сходство может запутать нас и побудить относиться одинаково к эмпирическими предложениям типа «Существуют рыжие собаки» и методологическим типа «Существуют физические объекты». Но дело в том, что мы не можем вообразить ситуацию, в которой мы могли бы убедиться в ложности методологи­ческого предложения. Это зависит уже не от контекста, а от совокуп­ности всего воображаемого опыта.

Витгенштейн выделяет еще два вида предложений: предложения, в которых я едва ли могу сомневаться, и предложения, которые трудно классифицировать (например, утверждение, что я никогда не был в другой Солнечной системе).

Утверждения, в которых невозможно сомневаться. В свое время Р. Декарт настаивал на необходимости возможно более полного и ра­дикального сомнения. Согласно Декарту, вполне достоверно лишь его знаменитое cogito — положение «Я мыслю, следовательно, существую». Витгенштейн придерживается противоположной позиции: для сомне­ний нужны веские основания, более того, есть категории утверждений, в приемлемости которых мы не должны сомневаться никогда. Выде­ление этих категорий утверждений непосредственно обусловлено сис­темным характером человеческого знания, его внутренней целостнос­тью и единством.

Связь обосновываемого утверждения с той системой утверждений, в рамках которой оно выдвигается и функционирует, существенным образом влияет на эмпирическую проверяемость этого утверждения и, соответственно, на ту аргументацию, которая может быть выдвинута в его поддержку. В контексте своей системы («языковой игры», «прак­тики») утверждение может приниматься в качестве несомненного, не подлежащего критике и не требующего обоснования по меньшей мере в двух случаях.

Во-первых, если отбрасывание этого утверждения означает отказ от определенной практики, от той целостной системы утвержде­ний, неотъемлемым составным элементом которой оно является.

Во-вторых, утверждение должно приниматься в качестве несо­мненного, если в рамках соответствующей системы утверждений оно стало стандартом оценки иных ее утверждений и в силу этого утратило свою эмпирическую проверяемость. Среди таких утверждений, перешедших из разряда описаний в разряд ценностей, можно выделить два типа:

1) утверждения, не проверяемые в рамках определенной, достаточ­но узкой практики,

Например, об имени человека, просматривающего почту: пока он занят этой деятельностью, он не может сомневаться в своем имени;

2) утверждения, не проверяемые в рамках любой, сколь угодно ши­рокой практики,

Например, «Су­ществуют физические объекты», «Я не могу ошибаться в том, что у меня есть рука» и т.п.

Об одной классификации утверждений. Системный характер науч­ного утверждения зависит от его связи с той системой утверждений (или практикой), в рамках которой оно используется. Можно выделить пять типов утверждений, по-разному относящихся к практике их упот­ребления:

1) утверждения, относительно которых не только возможно, но и разумно сомнение в рамках конкретной практики;

2) утверждения, в отношении которых сомнение возможно, но не является разумным в данном контексте (например, результаты надеж­ных измерений; информация, полученная из надежного источника);

3) утверждения, не подлежащие сомнению и проверке в данной практике под угрозой разрушения последней;

4) утверждения, ставшие стандартами оценки иных утверждений, и потому не проверяемые в рамках данной практики, однако допус­кающие проверку в других контекстах;

5) методологические утверждения, не проверяемые в рамках любой практики.

Обоснование изолированных утверждений. Иногда высказывается мнение, что вследствие системного характера нашего знания неоправ­дан вопрос об обосновании любого отдельно взятого утверждения. Вся­кое более или менее абстрактное предположение, лишь косвенно под­держиваемое непосредственным опытом, может считаться истинным только в рамках какой-то концепции или теории. За ее пределами оно просто бессмысленно и, значит, не может быть ни обосновано, ни опровергнуто.

Таким образом, системность обоснования не означает, что отдель­но взятое эмпирическое утверждение не может быть ни обосновано, ни опровергнуто вне рамок той теоретической системы, к которой оно принадлежит.

Внутренняя перестройка теории как способ ее обоснования. Важным, но пока почти неисследованным способом обоснования теоретическо­го утверждения является внутренняя перестройка теории, в рамках ко­торой оно выдвинуто. Эта перестройка, или переформулировка, пред­полагает введение новых образцов, норм, правил, оценок, принципов и т.п., меняющих внутреннюю структуру как самой теории, так и по­стулируемого ею «теоретического мира». Новое научное, теоретическое положение складывается не в вакуу­ме, а в определенном теоретическом контексте. Контекст теории оп­ределяет конкретную форму выдвигаемого положения и основные пе­рипетии его последующего обоснования. Если научное предположение берется в изоляции от той теоретической среды, в которой оно появ­ляется и существует, остается неясным, как ему удается в конце концов стать элементом достоверного знания. '

Выдвижение предположений диктуется динамикой развития тео­рии, к которой они относятся, стремлением ее охватить и объяснить новые факты, устранить внутреннюю несогласованность и противоре­чивость и т.д. Во многом поддержка, получаемая новым положением от теории, связана с внутренней перестройкой этой теории. Она может заключаться во введении номинальных определений (определений-требований) вместо реальных (определений-описаний), в принятии дополнительных соглашений относительно изучаемых объектов, уточ­нении основополагающих принципов теории, изменении иерархии этих принципов и т.д.

Теория придает входящим в нее положениям определенную силу. Эта поддержка во многом зависит от положения утверждения в теории, в иерархии составляющих ее утверждений. Перестройка теории, обес­печивающая перемещение какого-то утверждения от ее «периферии» к ее «ядру», сообщает этому утверждению большую системную под­держку.

Совершенствование теории как способ обоснования входящих в нее утверждений. Теория дает составляющим ее утверждениям дополни­тельную поддержку. Чем яснее и надежней сама теория, тем большей является такая поддержка. В силу этого совершенствование теории, укрепление ее эмпирической базы и прояснение ее общих, в том числе философских и методологических, предпосылок являются одновре­менно существенным вкладом в обоснование входящих в нее утверж­дений.

Среди способов прояснения теории особую роль играют:

• выявление логических связей ее утверждений;

• минимизация ее исходных допущений;

Характеристики

Тип файла
Документ
Размер
234 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6761
Авторов
на СтудИзбе
282
Средний доход
с одного платного файла
Обучение Подробнее