125786 (717659), страница 4

Файл №717659 125786 (Высокопроизводительные методы обработки металлов давлением) 4 страница125786 (717659) страница 42016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Наиболее существенный из этих признаков - первый, остальные в определенной мере можно рассматривать как его следствия.

Признаки сверхпластичности проявляются в определенных условиях, среди которых принципиальное значение имеют структурное состояние деформируемого материала, температура и скорость деформации.

По структурному признаку принято различать две разновидности сверхпластичности: сверхпластичность у металлов и сплавов с особо мелким (сверхмелким) зерном (d < 10 мкм) и сверхпластичность полиморфных металлов и сплавов, проявляющуюся при деформировании их в процессе фазовых превращений, при этом исходный размер зерен не имеет значения.

Первую разновидность сверхпластичности называют структурной. Ее отличительными особенностями являются зависимость эффекта от исходного размера зерен (чем меньше зерно, тем больше склонность материала к скоростному упрочнению, соответственно больше его деформационная способность и меньше напряжение течения) и почти неизменное структурное состояние материала в процессе деформации. При этом необходимо, чтобы зерна имели приблизительно равноосную форму, в процессе нагрева до температуры деформации обладали достаточной устойчивостью против роста. Наилучшие условия для предотвращения роста зерна - у двухфазных сплавов. В сверхмелкозернистое состояние сплавы приводят обычно предварительной термической или термомеханической обработкой.

Вторая структурная разновидность сверхпластичности, наблюдающаяся при деформации материала в процессе фазового превращения, характеризуется, в отличие от структурной свёрхпластичности, постоянным изменением фазового состава и структуры материалов в процессе деформации.

Температурный интервал существования структурной сверхпластичности довольно широк; различный для различных металлов и сплавов, он может находиться в пределах от температуры начала рекристаллизации (0,4 Tпл) до температур, близких к температуре плавления. Нижняя граница температурного интервала обусловлена важной ролью диффузионных процессов в механизме деформации сверхмелкозернистых материалов, верхняя граница соответствует температуре начала собирательной рекристаллизации. Однако какой бы ни была температура структурной сверхпластичности, она должна поддерживаться постоянной по объему деформационного объекта в течение всего периода деформации, чтобы обеспечить равномерное течение металла, поэтому структурную сверхпластичность иногда называют изотермической.

Сверхпластичность, связанная с превращениями, реализуется при различных температурных режимах (в процессе монотонно изменяющейся температуры, проходящей через интервал превращения; при термоциклировании в пределах температурной амплитуды, включающей интервал температур превращения).

Скорость деформации для обеспечения состояния структурной сверхпластичности должна быть, с одной стороны, достаточно малой, чтобы успевали в полном объеме протекать диффузионные процессы, участвующие в деформации, с другой стороны, достаточно высокой, чтобы в условиях повышенных температур не допускать роста зерен. Для подавляющего большинства металлов и сплавов оптимальный интервал скоростей деформации, соответствующий структурной сверхпластичности, составляет 10-2 - 10-5 с-1, т.е. находится в промежутке между скоростями высокотемпературной ползучести и скоростями деформации, используемыми в традиционных процессах обработки металлов давлением. Скорость деформации при сверхпластичности превращения должна быть пропорциональна скорости последнего.

Задача определения условий существования сверхпластичности сводится к экспериментальному определению температурно-скоростных режимов деформации и структурного состояния исследуемою материала, при которых последний проявляет максимальную чувствительность напряжения течения к скорости и деформации (способность к скоростному упрочнению).

Для описания структурной сверхпластичности чаще всего используют эмпирическое уравнение = k n vm из которого следуют выражения, определяющие показатели деформационного (n) и скоростного (m) упрочнения. При n=0, что характерно для состояния, структурной сверхпластичности, = k1 vm

Таким образом, показатель m определяется как тангенс угла наклона кривой (v) в двойных логарифмических координатах.

Рис.17. Схема условного разделения кривой сверхпластичности на три участка: I - m 0,3; II - 0,3 m mmax; III - m 0,3 (шкалы и - логарифмические; шкала m-линейная)

Для материалов в состоянии структурной сверхпластичности эта кривая, которую иногда называют кривой сверхпластичности, имеет характерную S - образную форму, а зависимость показателя т от скорости деформации описывается кривой с максимумом, координата которого по оси V соответствует координате точки перегиба S-образной кривой (рис.17). С увеличением температуры точка перегиба смещается в сторону больших скоростей деформации. Аналогично увеличению температуры действует уменьшение исходного размера зерна сверхпластичного материала.

Таким образом, показатель m не является реологической постоянной материала, т.е. существенно зависит от температурно-скоростных режимов деформаций.

Сверхпластичность фазового превращения характеризуется значительным изменением показателя m в процессе деформации от 0,2 до 1,0, причем в первом приближении он прямо пропорционален скорости фазового превращения. Эта зависимость наглядно иллюстрирует структурную природу нелинейности вязкого течения сверхпластичных материалов (рис.18).

Рис.18. Зависимость напряжения течения сплава MA-1 при растяжении и осадке и коэффициента m от температуры испытания (а) и скорости деформации (б)

Ряд особенностей, характеризующих металлы в состоянии сверхпластичности, - чрезвычайно большая деформационная способность, малое напряжение течения, слабое влияние сверхпластической деформации на микроструктуру, высокая релаксационная способность обеспечивают возможность значительного повышения эффективности процессов обработки металлов давлением и качества готовых изделий. С другой стороны, малые скорости деформации соответствующие состоянию сверхпластичности, необходимость подготовки структуры заготовок и регламентированного температурного режима деформации существенно усложняют и удорожают подготовку производства, снижают производительность технологических процессов и в результате ограничивают использование сверхпластичности в обработке металлов давлением. Сопоставление указанных преимуществ и ограничений, а также обобщение имеющегося опыта использования сверхпластичности, например в процессах штамповки, позволяет выделить ряд технологических задач, при решении которых наибольший эффект обеспечивает деформирование в состоянии сверхпластичности, К таким задачам прежде всего относятся следующие:

1. Штамповка малопластичных и трудно деформируемых металлов и сплавов на основе никеля, титана, магния, алюминия, железа, тугоплавких металлов, которые отличаются, как правило, высокой стоимостью, а их обработка - большой трудоемкостью и многооперационностью, поэтому увеличение деформационной способности материала в состоянии сверхпластичности позволяет существенно увеличить деформацию за один технологический переход и перейти, таким образом, к малооперационной технологии, что в значительной мере компенсирует уменьшение производительности за счет малых скоростей деформации.

Штамповка или другие способы формовки изделий, отличающихся особо сложной формой, получение которой часто недоступно для традиционных методов обработки металлов давлением (например, тонкостенные детали сложной формы с оребрением, замкнутые емкости сферической и более сложной формы и т.д.). Это дает возможность максимально приближать форму и размеры поковки к форме и размерам готовой детали, снижать до минимума или полностью исключить припуск на механическую обработку, добиваясь значительной экономии дорогостоящих металлов и сплавов, снижения трудоемкости механической обработки.

Снижение требуемых усилий штамповки и мощности применяемого оборудования. Прямым следствием этого является увеличение фондоотдачи деформирующего оборудования и уменьшение энергоемкости процессов штамповки: появляется возможность переводить производство ряда крупногабаритных штампованных поковок, получаемых на мощных прессах, на деформирование в состоянии сверхпластичности. Наряду с этим в состоянии сверхпластичности реализуются такие технологические процессы, как, например, бесфильерное волочение, газостатическая формовка, термоупругая штамповка, которые вообще не нуждаются в прессовом оборудовании. Малые удельные усилия при деформировании в состоянии сверхпластичности способствуют существенному увеличению стойкости штампованного инструмента и позволяют заметно уменьшить его стоимость.

Улучшение ряда показателей качества готовой продукции. Повышенная текучесть и малые удельные усилия при штамповке сверхпластичных материалов способствуют более качественному воспроизведению формы ручья штампа, повышению точности размеров и чистоты поверхности поковок, уменьшению разброса размеров в пределах партии поковок. Высокая способность к релаксации напряжений материалов в состоянии сверхпластичности практически исключает внутренние напряжения в изделиях, а это, в свою очередь, обеспечивает стабильность размеров и формы готовых деталей, повышенную стойкость металла детали против коррозии в химически активных средах, исключает коробления в процессе и после термообработки и т.д. И наконец, отсутствие существенных изменений структуры материала заготовки в процессе сверхпластической деформации обеспечивает получение высококачественных штампованных поковок, изотропных в отношении структуры и механических свойств.

6.2. Технологические процессы штамповки металлов в состоянии сверхпластичности

Наиболее часто сверхпластичность используется в технологии объемной штамповки. В этом случае состояние сверхпластичности позволяет осуществить штамповку точных поковок сложной формы и больших размеров из малопластичных материалов при весьма малых условиях деформации. В отличие от кованых поковок, а также от штампованных поковок обычной точности (рис. 19), требующих значительной обработки резанием по всей поверхности, точные штампованные поковки не надо обрабатывать, за исключением мест сопряжения и участков, в которых предусмотрено сверление или вырубка отверстий. При штамповке точечных поковок обеспечиваются жесткие допуски и минимальные радиусы закружений, штамповочные уклоны не превышают 1,75*10-2 рад. В результате при штамповке точечных поковок получают наибольший коэффициент использования металла (КИМ) 0,8 и более (у поковок обычной точности КИМ в среднем равен 0,2-0,5), что очень важно при изготовлении деталей из дорогостоящих металлов и сплавов.

Один из первых вариантов использования состояния сверхпластичности для получения объемных деталей сложной формы возник, как аналогия обработки материалов, относящихся к вязким жидкостям. Схема этого процесса (рис. 20) напоминает литье в металлическую форму под давлением. Процесс заключается в выдавливании цилиндрической заготовки 1 через соответствующие каналы 2 в полости ручьев штампа 3. Этот процесс, позволяющий получать детали неограниченно сложной формы, возможен исключительно для сверхпластичных материалов, таких, как сплавы Zn - 22% Al; Al - 33% Cu; Al - 13% Si. Однако классические сверхпластичные сплавы не нашли пока широкого промышленного применения, поэтому более перспективными выглядят процессы обработки давлением промышленных сплавов в температурно-скоростном режиме сверхпластичности. Наиболее значительные успехи в этой области достигнуты при штамповке поковок сложной формы в изотропных условиях из титановых сплавов.

Рис. 19. Контуры поковки, полученной различными способами: a - ковкой; б - черновой (предварительной) штамповкой; в - штамповкой обычной точности; г - точной штамповкой

Рис. 20. Комбинированный процесс выдавливание - штамповка: а - штампы; б - готовая деталь


Список литературы

  1. Губарева Э.М. Высокопроизводительные методы обработки металлов давлением. Учеб. пособие. Пермь: Пермский государственный технический университет. 1996.

  2. Коликов А.П., Подухин П.И., Крупин А.В. Новые процессы деформации металлов и сплавов: Учеб. пособие для вузов. М.: Высшая школа, 1986.

  3. Петров А.П., Масловский П.А., Ершов С.В. Прогрессивные технологические процессы ковки и объемной штамповки. М.: Высшая школа. 1988.

Характеристики

Тип файла
Документ
Размер
3,41 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6551
Авторов
на СтудИзбе
299
Средний доход
с одного платного файла
Обучение Подробнее