125496 (717585), страница 2
Текст из файла (страница 2)
Рис. 6. Устройство центробежного регулятора
1 — кулачок; 2 — грузик; 3 — пластина кулачка; 4 — ведущий валик; 5 — штифт; 6 — пружина; 7 — ось грузика.
Положение грузиков:
I — на холостом ходу двигателя;
II — при максимальной частоте вращения вала двигателя
Вакуумный регулятор (рис. 7) служит для изменения угла опережения зажигания в зависимости от нагрузки двигателя. Вакуумный регулятор обеспечивает также снижение расхода топлива, особенно при работе двигателя на малых и средних нагрузках. Вакуумный регулятор работает независимо от центробежного регулятора.
Вакуумный регулятор выполнен в виде камеры, которая диафрагмой разделена на две части.
Одна часть трубопроводом соединена со смесительной камерой карбюратора, а другая с окружающей средой.
В той части камеры, которая соединена с карбюратором, установлена специальная пружина, которая регулируется шайбами.
Диафрагма соединена тягой с подвижной пластиной прерывателя.
Рис. 7. Устройство вакуумного регулятора
1 — крышка корпуса; 2 — регулировочная прокладка; 3 — уплотнительная прокладка; 4 — штуцер крепления трубки; 5 — трубка; 6 — пружина; 7 — диафрагма; 8 — корпус регулятора; 9 —тяга; 10 — ось тяги; 11 —подвижная пластина прерывателя;
I —положение диафрагмы вакуумного регулятора:
а — нагрузка на двигатель больше, б — нагрузка меньше
При большом открытии дроссельной заслонки вакуумный регулятор не работает.
С уменьшением открытия дроссельной заслонки разряжение в смесительной камере увеличивается и от давления наружного воздуха диафрагма прогибается, заставляя перемещаться тягу. Эта тяга поворачивает подвижную пластину прерывателя в сторону, противоположную направлению вращения валика, т. е. в сторону более раннего зажигания.
Для уточнения угла опережения зажигания в зависимости от качества применяемого топлива (октанового числа) служит октан-корректор, расположенный на корпусе распределителя (рис. 8).
Он состоит из двух пластин: верхней и нижней. Верхняя пластина закреплена на корпусе распределителя, а нижняя — на блоке двигателя.
Закрепленный на блоке двигателя распределитель можно повернуть относительно валика с помощью регулировочных гаек. На нижней пластине имеются деления, а конец верхней пластины выполнен в виде стрелки. Каждое деление шкалы октан-корректора равно 2° поворота коленчатого вала.
Все три регулятора работают независимо один от другого. Изменение угла опережения зажигания, осуществляемое каждым регулятором, суммируется.
Рис. 8. Распределитель зажигания
1 — гайки октан-корректора; 2 — винт крепления распределителя к корпусу привода; 3 — колпачковая масленка; 4 — конденсатор; 5 — регулировочный эксцентриковый винт; 6 — стопорный винт
Для уменьшения искрения на контактах прерывателя применяют конденсаторы.
Конденсатор (рис. 9) состоит из корпуса, внутри которого размещены свернутые рулоном две полосы алюминиевой фольги, изолированные друг от друга специальной бумагой. Одна из лент присоединена к "массе", а другая проводом к изолированному рычажку прерывателя. В последнее время применяют малогабаритные, герметизированные конденсаторы, у которых на бумагу, пропитанную маслом, напилен тонкий слой олова, а поверх его тонкий слой цинка. Крепится конденсатор на корпусе прерывателя снаружи или на подвижном диске.
Конденсаторы, устанавливаемые внутри корпуса прерывателя-распределителя, имеют меньшие размеры и обладают свойством самовосстанавливаться при пробое.
Рис. 9. Конденсатор
а — большого габарита; б — малого габарита
4 Свечи зажигания
Свеча зажигания (искровая) служит для образования искрового разряда и зажигания рабочей смеси в камере сгорания двигателя.
Свеча зажигания (рис. 10) состоит из корпуса, центрального электрода с изолятором и бокового электрода, приваренного к корпусу свечи.
Устройство искровых зажигательных свечей различных марок практически одинаково. Они отличаются:
— размерами;
— формой;
— материалом изоляторов;
— формой сердечника;
— материалом электродов.
Свеча при работе двигателя подвержена высоким тепловым, электрическим, механическим и химическим нагрузкам.
Поверхность свечи, ввернутая в камеру сгорания, испытывает давление до 12 МПа (120 кгс/см2).
Рис. 10. Свеча зажигания
Свеча зажигания состоит:
1 — изолятор;
2 — корпус;
3 — центральный электрод;
4 — боковой электрод.
В процессе работы двигателя на части свечей, расположенных в камере сгорания, попадает масло, которое, сгорая, образует нагар, шунтирующий искровой зазор в свече. Это приводит к утечке энергии и снижению вторичного напряжения. Энергия может также утекать по наружной поверхности изолятора, если она загрязнена или покрыта влагой.
Нагар на тепловом конусе изолятора исчезает при нагреве его до температуры 400—500° С. Эта температура самоочищения свечи. Если температура теплового конуса изолятора превысила 850—900° С, может возникнуть калильное (напряжение) зажигание.
На рисунке 11 показана зависимость тепловой характеристики свечи от размеров теплового конуса изолятора.
Рис. 11. Зависимость тепловой характеристики свечи (калильного числа) от размеров теплового конуса изолятора
125, 145, 175, 225, 240 — калильные числа по Bosch (ФРГ);
10, 14,17, 23, 26 — калильные числа по ГОСТ 2043—74.
Чрезмерный нагрев свечи приводит к разрушению изолятора, а переохлаждение — к забрызгиванию электродов свечи маслом и обильному образованию нагара.
В условном обозначении свечей зажигания цифры и буквы обозначают: первая А — резьба на корпусе М 14 × 1,25 или М — резьба на корпусе
М 18 × 1,65, вторые одна или две цифры — калильное число. Согласно ГОСТу, калильным числом называется отвлеченная величина, пропорциональная среднему индикаторному давлению, при котором во время испытания свечи на моторной тарировочной установке в цилиндре двигателя начинает появляться калильное зажигание. Калильные числа могут иметь следующие значения: 8, 11, 14, 17, 20, 23 и 26. Далее буквы Н — длина резьбовой части корпуса 11 мм (Д — длина резьбовой части корпуса 19 мм), В — выступающие теплового конуса изолятора за торец корпуса, Т — герметизация по соединению изолятор — центральный электрод термоцементом.
Длину резьбовой части корпуса 12 мм, отсутствие выступления теплового конуса за торец корпуса и герметизацию по соединению изолятор — центральный электрод иным герметикой, кроме термоцемента, не обозначают. Пример условного обозначения свечи зажигания с резьбой на корпусе М 14 × 1,25, калильным числом 20, длиной резьбовой части корпуса 19 мм, имеющей выступание теплового конуса за торец корпуса: А20ДВ.
Большое влияние на работу свечи зажигания имеет зазор между центральным и боковым электродами. Заводы рекомендуют следующие зазоры: ЗИЛ-130 — 0,6—0,75; ГАЗ-31 — 0,8—0,9 мм.
Уменьшение зазора против нормы вызывает обильное нагарообразование на электродах свечи зажигания и перебои в ее работе. При большом зазоре из-за повышения сопротивления ухудшаются условия искрообразования, отчего также будут возникать перебои в работе двигателя.
Регулируют зазор подгибанием бокового электрода, а его величину проверяют щупом (рис. 12). Центральный электрод подгибать нельзя, так как разрушается керамическая изоляция и свеча зажигания отказывает в работе.
Величина искрового зазора между электродами свечи зависит от степени сжатия рабочей смеси. Чем выше степень сжатия, тем меньше зазор свечи.
Рис. 12. Регулировка зазора между электродами свечи зажигания
а — проверка; б — регулировка
5 Замок зажигания
Замок-выключатель зажигания и стартера (рис. 13) служит для включения и выключения системы зажигания, стартера, контрольно-измерительных приборов, радиоприемника и других приборов электрооборудования автомобиля, трактора. Он состоит из замка и выключателя. Ключ 7, вставленный в барабан 6 замка, утапливает замочные пластины 5, удерживающие от проворачивания барабан и связанный с ним ротор 3. При повороте ключа подвижный контакт 9 соединяет между собой центральный зажим 10 (AM) , который связан с источником питания, и контакты 11, 12, 13 , соединенные соответственно с клеммами ПР, КЗ и СТ.
Ротор 3 и барабан 6 установлены в корпусе 4, который с одной стороны закрыт карболитовой крышкой 1, с выводными клеммами, а с другой стороны — крепящей гайкой 8. Во включенном и выключенном положениях ротор замка удерживают фиксаторы 2, шарики которых под действием пружины входят в треугольные пазы корпуса.
Ротор выключателя может занимать три положения. В первом положении (ключ повернут вправо) включены зажигание, радиоприемник и приборы. При дальнейшем повороте ключа вправо (второе положение) включаются зажигание, стартер, контрольно-измерительные приборы. В этом положении ключ необходимо удерживать рукой. Третье положение (поворот ключа влево) соответствует включению радиоприемника, магнитофона на стоянке.
Рис. 13. Выключатель зажигания и стартера и схема соединения клемм
6 Схема и принцип действия батарейной системы зажигания
Батарейная система зажигания состоит (рис. 14) из катушки зажигания 3, прерывателя-распределителя 5, искровых свечей 4 и выключателя зажигания 1. Система зажигания получает питание от аккумуляторной батареи 2 или генератора.
В системе батарейного зажигания имеются две цепи —
— цепь низкого напряжения
— цепь высокого напряжения.
В цепь низкого напряжения входят источник тока, выключатель зажигания, первичная обмотка катушки зажигания с дополнительным сопротивлением и прерыватель.
Цепь высокого напряжения состоит из вторичной обмотки катушки зажигания, распределителя, проводов высокого напряжения, свечей зажигания.
Рис. 14. Схема батарейного зажигания
Схема батарейного зажигания состоит:
а — общая;












