123971 (717294), страница 2

Файл №717294 123971 (Простейшие типы деформаций стержней. Допущения и определение деформаций) 2 страница123971 (717294) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Принцип независимости действия сил (принцип наложения) – результат воздействия на тело системы сил равен сумме результатов воздействия тех же сил, прилагаемых к телу отдельно в любом порядке.

Принцип Сен-Венана – в точках тела, достаточно удаленных от мест приложения нагрузок, величина внутренних сил мало зависит от конкретного способа приложения этих нагрузок. Этот принцип позволяет замену одной системы сил другой более простой системой, статически эквивалентной первой, что упрощает расчет, например, замену системы распределенных сил равнодействующей, приложенной в центре масс.

Гипотеза плоских сечений (гипотеза Бернулли) – поперечные сечения стержней, плоские до приложения нагрузки, остаются плоскими и нормальными к продольной оси стержня при действии нагрузки.

Определение деформаций и напряжений при растяжении-сжатии

Возьмем стержень (см. рис. 3, а), длиной , шириной b и нанесем на его поверхность координатную сетку, т. е. линии вдоль и перпендикулярно продольной оси. К торцам стержня приложим силы, направленные вдоль продольной оси. Стержень испытывает деформацию растяжения, длина его увеличилась на величину

, (3)

а ширина уменьшилась на величину

, (4)

где 1, b1 – соответственно длина и ширина стержня после приложения сил. Величины Δ и Δb называют абсолютным удлинением и сужением стержня или абсолютной продольной и поперечной деформацией. Величину

ε = Δℓ/ ℓ (5)

называют относительной линейной деформацией или относительным удлинением.

Соответственно ε1 = Δb/ b называется относительной поперечной деформацией. Абсолютная величина отношения относительной поперечной деформации ε1 к относительной продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона

μ = | ε1/ ε |, (6)

который характеризует упругие свойства материала, его способность к поперечным деформациям. Величина коэффициента Пуассона определяется экспериментально и для различных материалов колеблется в пределах от нуля (для пробки), приближаясь к значению 0,5 (для резины). Для большинства металлических сплавов коэффициент Пуассона находится в пределах от 0,23 до 0,36 (для стали μ = 0,25 … 0,33; для чугуна μ = 0,23 … 0,27; для медных сплавов μ = 0,31 … 0,36; для алюминиевых сплавов μ = 0,32 … 0,36).

Замечено, что прямые линии, перпендикулярные продольной оси стержня, остаются прямыми и после деформаций, т.е. подтверждается гипотеза плоских сечений (гипотеза Бернулли). Это позволяет утверждать, что деформации (удлинения) и, в соответствии с законом Гука, напряжения образующих стержня, параллельных оси, в любом поперечном сечении равны, т.е. деформации и напряжения во всех точках поперечного сечения одинаковы.

Определим внутренние силы в поперечном сечении (см. рис. 3, б), воспользовавшись методом сечений. Они уравновешивают внешнюю силу F, складываясь в равнодействующую внутренних сил N. Из уравнения равновесия в проекциях сил на продольную ось стержня определим, что N = F.

Составляющая внутренних сил N направлена по нормали к поперечному сечению, поэтому в сечении действуют нормальные напряжения, величина которых определяется с учетом равномерного распределения их по сечению как

σ = N /A = F/ A, (7)

где А – площадь поперечного сечения стержня.

При упругих деформациях справедлив закон Гука, устанавливающий линейную зависимость между напряжением и деформацией,

σ = E·ε. (8)

Коэффициент пропорциональности Е называют модулем упругости материала (модулем Юнга). Он является физической постоянной материала, характеризует, как и коэффициент Пуассона, его упругие свойства и определяется опытным путем.

Подставив в выражение (8) значения σ (7) и ε (5), получим формулу для определения абсолютного удлинения стержня

Δℓ = (N·ℓ)/ (E·A). (9)

Произведение Е·А характеризует сопротивляемость стержня к удлинению (сжатию) и называется жесткостью стержня при растяжении (сжатии).

Формулой (9) можно пользоваться для определения абсолютной продольной деформации стержня длиной ℓ при условии, что площадь сечения стержня в пределах всей длины постоянна и продольная сила N во всех поперечных сечениях одинакова. Если параметры E, N, A по длине не постоянны, формула (9) позволяет определить удлинение только отдельного i–го участка стержня, а его полное удлинение определяется как алгебраическая сумма изменений длин участков

. (10)

При этом границами характерных участков являются точки приложения внешних продольных сил Fi; места изменения поперечных размеров (Ai) и границы соединения растягиваемого элемента (Ei) из разных материалов. Продольная сила Ni на i-ом участке равна алгебраической сумме проекций на продольную ось стержня сил, действующих по одну (любую) сторону от сечения. Сжатие отличается от растяжения только направлением внешних сил. Принято считать внешние продольные силы, напряжения и деформации при растяжении положительными, а при сжатии – отрицательными. Зависимости по определению деформаций и напряжений при растяжении имеют место и при сжатии, но при сжатии длина стержня уменьшается, а поперечные размеры увеличиваются.

Пример. Определить внутренние силы и напряжения в поперечных сечениях участков с длиной 1, 2, 3, а также перемещения точек приложения внешних продольных сил F1, F2 и F3 ступенчатого стержня (рис. 7). Модули упругости материала участков E1, E2, E3 и величины поперечных сечений постоянны по длинам участков и равны соответственно A1, A2 ,A3.

Рис. 7

Пользуясь методом сечений , определим внутренние продольные силы в сечениях 1–1, 2–2 и 3–3. Так как силы реакции в месте закрепления (торец 0) стержня неизвестны, составляем для определения внутренних сил уравнения равновесия известных сил, т.е. сил, действующих на стержень справа от рассматриваемых сечений. Проектируя внешние и внутренние силы на продольную ось стержня, имеем

N1–1 = F1 – F2 + F3; N2–2 = – F2 + F3; N3–3 = F3 .

Напряжения в поперечных сечениях участков OO1,O1B и BC соответственно равны σ1 = N1–1/A1; σ2 = N2–2/A2; σ3 = N3–3/A3.

Определим изменения длин участков ℓ1, ℓ2, ℓ3 стержня

Перемещение Δℓ точки О равно нулю, точки приложения сил: F1: = Δℓ1; F2: ΔℓB = Δℓ1 + Δℓ2; F3: ΔℓC = Δℓ1 + Δℓ2 + Δℓ3.

Силы веса стержня в данном примере не участвовали. Если при заданных схемах нагружения стержней их силы веса способствуют деформации растяжения (сжатия), то их нужно учитывать с соответствующим знаком при определении продольных внутренних сил N, напряжений и деформаций стержня.

ЛИТЕРАТУРА

1. Красковский Е.Я., Дружинин Ю.А., Филатова Е.М. Расчет и конструирование механизмов приборов и вычислительных систем: Учебное пособие. М.: – Высш. шк., 2001. – 480 с.

2. Сурин В.М. Техническая механика: Учебное пособие. – Мн.: БГУИР, 2004. – 292 с.

3. Ванторин В.Д. Механизмы приборных и вычислительных систем: Учебное пособие. – М.: Высш. шк., 1999. – 415 с.

Характеристики

Тип файла
Документ
Размер
6,29 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6920
Авторов
на СтудИзбе
266
Средний доход
с одного платного файла
Обучение Подробнее
{user_main_secret_data}