123348 (717170), страница 2

Файл №717170 123348 (Модель технического объекта) 2 страница123348 (717170) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Диагностическая модель – это любое знание, используемое в процессе решения диагностической задачи и представленное в определенной форме [3, с. 20].

Спектр форм диагностических моделей широк – от образов дефектов и их признаков в сознании отдельного специалиста-практика по обслуживанию и ремонту ОД до математических конструкций, реализованных в формальных диагностических программах.

Отметим, что прямая и обратная задачи являются по существу выражением в технической диагностике двух фундаментальных подходов теории систем.

Задача контроля есть выражение функционального подхода; задача поиска дефектов – выражение структурного подхода. Традиционно, используя готовый математический аппарат, для решения первой задачи применяют абстрактные модели (дифференциальное уравнение заданного порядка, аналитическое выражение логической функции, абстрактный конечный автомат), а для решения второй – структурные модели (структурные, комбинационные, последовательностные схемы).

Выбор диагностического сигнала должен проводиться таким образом, чтобы он был достаточно информативен для оценки вектора r, его изменений.

Сложность вибрационных процессов, вызванных работой технического объекта и его элементов, различие физических моделей и методов их математического описания на различных участках частотного диапазона послужили основанием для разбивки его на три поддиапазона: [2, с. 20]:

- диапазон низких частот (от 0 до 200-300 Гц);

- диапазон средних частот (от 200-300 Гц до 1-2 кГц);

- диапазон высоких частот (от 1-2 к Гц до 10-20 кГц).

При рассмотрении диагностических моделей целесообразно, на наш взгляд, ввести еще один поддиапазон: диапазон сверхвысоких частот (от 10-20 кГц до 100-200 кГц).

Полезность такого деления объясняется тем, что каждому диапазону свойственны свои возмущающие силы, своя физическая модель объекта как колебательной системы и своя диагностическая модель.

Низкочастотная вибрация носит преимущественно гармонический характер, так как одной из характерных причин ее является неуравновешенность вращающихся масс. Наиболее вероятными причинами низкочастотных колебаний являются: неуравновешенность, гарушение соосности валов; нарушение геометрии узлов; периодические силы, создаваемые рабочим процессом.

Динамическая модель механизма в области низкочастотных колебаний представляет собой комбинацию сосредоточенных масс, связанных с упругими безынерционными элементами. Силы в этих моделях обычно носят детерминированный характер. Весь объект рассматривается как единая упругая система, исследование которой производится методами прикладной теории колебаний.

Колебания среднечастотного диапазона обусловлены:

- высшими гармониками сил неуравновешенности элементов, обусловленных наличием нелинейных элементов в системе;

- нарушением геометрии кинематических пар;

- динамическим взаимодействием элементов машины между собой и с окружающей средой.

Каждая диагностическая модель имеет свои особенности.

Диагностический эксперимент или процесс диагностирования состоит из отдельных испытаний, которые принято называть элементарными проверками (ЭП).

Элементарная проверка есть акт однократной оценки определенного ДП. Оценка ДП производится в заранее фиксированных местах ОД, их принято называть контрольными точками (КТ). Часто ЭП называют пару, первая компонента которой – это определенное воздействие на ОД, а вторая – реакция ОД на это воздействие.

Ясно, что ОД, находящийся в разных технических состояниях (ТС), может выдавать разные реакции в одной и той же ЭП. При таком узком понимании ЭП можно различать три их вида.

Первый вид - фиксируется значение входного воздействия и наблюдается реакция в нескольких КТ (вид 1:М). Второй вид - подается определенная последовательность входных воздействий и наблюдается последовательность реакций в одной КТ (вид М:1). Третий вид – это общий случай: подается последовательность входных воздействий и наблюдается более одной КТ (вид М:N). Исход диагностического эксперимента всегда случаен, так как если он предопределен, то проводить его бессмыс- ленно.

Таким образом, всякий процесс диагностирования включает последовательности ЭП при известных условиях и заданном наборе КТ.

В рамках структурного подхода понятие ЭП применяют также к отдельным частям ОД или их совокупностям. В этом случае, предполагается доступность входов и выходов этих частей. Какова мощность множества возможных ЭП (ВМП).

Термин диагностическая модель можно понимать в широком и в узком смыслах. В первом случае это понятие включает в себя в достаточном объеме все три вида перечисленных выше знаний. Назовем такую диагностическую модель полной.

Автору не известны научные работы, в которых бы формально описывалась полная диагностическая модель. Хотя в практике диагностирования использование полных неформальных диагностических моделей – это норма. Пример этому дают инструкции по техническому обслуживанию ремонту сложных технических систем. В них обязательно есть раздел «возможные неисправности и методы их устранения», в котором, как правило, приводится таблица с перечнем дефектов, их диагностических показателей и методов их устранения.

В этой таблице сконцентрированы все три вида диагностических знаний. Кроме того, в инструкциях обычно точно сказано, с чего следует начать осмотр. Если обнаруживаются те или иные особенности функционирования ОД, то в инструкции сказано, какие дополнительные наблюдения или измерения необходимо сделать, какие профилактические мероприятия надо провести, или, наконец, указывается действие, устраняющее дефекты.

Другими словами, описываются алгоритмы диагностирования и ремонта. В результате субъект диагностической деятельности, реализующий указания инструкции, может и не знать, какова причина неисправности. Инструкция составляется обычно группой квалифицированных специалистов с учетом опыта эксплуатации таких же или подобных систем [3, с. 24].

Всякая диагностическая модель, формализующая процесс поиска, нужна для двух применений: для построения алгоритмов диагностирования и для построения эталонной модели.

При автоматизации процессов диагностирования алгоритм поиска дефектов служит основой для синтеза технических средств диагностирования, а эталонная модель является носителем исправного или технической неисправности в этих средствах.

Почему теоретическая диагностика до сих пор не имеет полных диагностических моделей? По-моему, одна из причин следующая. Взять готовый математический аппарат и применить его к ограниченной этим аппаратом диагностической задаче – такова сегодня традиция в теории диагностирования.

С другой стороны все три вида диагностических знаний не формализуются адекватно в рамках любого из существующих математических аппаратов.

Подобная ситуация имеет место и в других областях науки и практики [3, с. 25].

Альтернатива установившейся традиции – это сочетание формальных и неформальных методов анализа в рамках целостного единого процесса исследования. Реализация такого подхода возможна в развитии теории диагностических экспертных систем.

Модель, не содержащую в достаточном объеме, хотя бы один из видов диагностических знаний, будем называть частной диагностической моделью.

Приведем несколько примеров частных диагностических моделей.

Если перечислены идентификаторы возможных дефектов, допускается существование способа оценки вектора ДП, определены необходимые априорные вероятности, то для поиска может быть использована схема Байеса, согласно которой по наибольшему значению апостериорной вероятности принимается решение о текущем одиночном дефекте.

Таким образом, можно сделать вывод о том, что диагностические модели являются определенной разновидностью структурных математических моделей для решения сугубо прикладных, диагностических задач.

III. Модель многоэлементного технического объекта

Система моделирования включает инструментарий автоматизации моделирования процессов массо-теплопереноса, выработки и распределения электроэнергии, состояния элементов оборудования, а также ряд инструментов, обеспечивающих двух- и трехмерную динамическую визуализацию имитируемых процессов на экране компьютера.

Модель объекта представляется системой алгебраических и дифференциальных уравнений, что обеспечивает возможность моделирования как статических состояний, так и переходных процессов в реальном времени.

Модель многоэлементного объекта в общем случае включает:

- модели технологических подсистем объекта (водяных, гидравлических, воздушных);

- модели электроэнергетической системы объекта (выработка и распределение электроэнергии);

- модели систем управления объектом, обеспечивающие имитацию как автоматических, так и ручных алгоритмов управления;

- модели состояния технологического оборудования объекта;

- модели развития факторов аварийных ситуаций на объекте (пожар, изменение газовоздушной среды и ряд прочих, специфичных для объекта);

- модели состояния персонала, обслуживающего объект.

Опыт моделирования многоэлементных технических объектов, а также опыт, накопленный в процессе разработки инструментальных средств моделирования и исполнения моделей, может быть использован в довольно широком спектре, для чего необходимо обеспечить:

1. Анализ предметной области и постановку задачи на разработку математического описания объектов данной предметной области;

2. Определение класса моделей, составляющих математическое описание объекта, выработку допущений и ограничений;

3. Возможное проведение экспериментальных исследований на объекте для решения задач идентификации объекта, параметрической настройки моделей, оценку степени адекватности моделей;

3. Разработку инструментальных систем (при необходимости);

4. Разработку (доработку, переработку) систем мониторинга моделируемого объекта;

5. Разработку моделирующего блока;

6. Разработку необходимых баз данных;

7. Экспертную оценку полученных результатов.

При исследовании сложных технических систем с дискретным характером функционирования наиболее широкое применение получили аналитические и имитационные методы моделирования.

Одним из основных требований, предъявляемых к модели, является ее адекватность реальной системе, которая достигается за счет использования моделей с различным уровнем детализации, зависящим от особенностей структурно-функциональной организации системы и целей исследования. Процессы функционирования реальных систем невозможно описать полно и детально, что обусловлено существенной сложностью таких систем. Основная проблема при разработке модели состоит в нахождении компромисса между простотой ее описания и необходимостью учета многочисленных особенностей, присущих реальным системам. Попытка построить единую универсальную модель обречена на неудачу, ввиду ее необозримости и невозможности расчета.

Математическое моделирование многоэлементных технических систем должно базироваться на ряде принципов, обеспечивающих корректность и достоверность результатов моделирования и, в конечном счете, качественное проектирование систем.

Среди этих принципов можно выделить три основных принципа:

1) системный подход при решении задач анализа и синтеза;

2) принцип иерархического многоуровневого моделирования;

3) принцип множественности моделей.

В основе исследования многоэлементных технических систем с использованием математического моделирования лежит системный подход, конечной целью которого является системотехническое проектирование, направленное на построение системы с заданным качеством. Для решения задач проектирования необходимо располагать знаниями о том, как влияют различные способы структурно-функциональной организации на характеристики функционирования системы, то есть решать задачи системного анализа.

Принцип иерархического многоуровневого моделирования базируется на иерархическом описании исследуемой системы и процессов, протекающих в них. При этом система и протекающие в ней процессы представляются семейством моделей, каждая из которых описывает поведение системы с точки зрения различных уровней абстрагирования, отличающихся рядом характерных особенностей и параметров, с помощью которых и описывается поведение системы.

Применительно к моделям многоэлементных технических систем с дискретным характером функционирования предлагается выделить два направления иерархии:

1) иерархия по вертикали, в которой деление моделей по уровням осуществляется в зависимости от структурно-функциональных особенностей системы;

2) иерархия по горизонтали, в которой деление моделей по уровням осуществляется в зависимости от методов их исследования.

В иерархии по вертикали, в общем случае, можно выделить три уровня моделей:

 уровень базовых моделей, содержащий простейшие модели, на основе которых строятся и могут быть рассчитаны другие более сложные модели второго и третьего уровней;

 уровень локальных моделей, отображающих отдельные особенности структурно-функциональной организации систем и позволяющих решать частные задачи анализа и синтеза;

 уровень глобальных моделей, наиболее полно отображающих структурные и функциональные особенности организации исследуемых систем и представляющих собой модели с высокой степенью детализации.

Модель используется при анализе движения деталей, соединенных в кинематические группы.

При анализе движения деталей, соединенных в кинематические группы, приходиться опираться на ряд абстракций и допущений, которые приводит к определенным погрешностям, но в то же время позволяют вскрыть принципиальную сущность этих явлений и облегают понимание механизма возникновения упруго – демпфированных колебаний [2, с. 30].

Реальный механизм всегда имеет внутренние степени свободы, связанные с наличием зазоров в кинематических группах. Для диагностирования это обстоятельство является весьма существенным, так как механизм выступает в качестве системы со многими степенями свободы. Точная постановка задачи о движении реального механизма требует составления и решения многомерной системы дифференциальных уравнений, порядок которого равен удвоенному числу степеней свободы организма [1, с. 167].

Первым шагом к упрощению задачи будет рассмотрение относительного движения элементов. Силы, действующие на детали со стороны сопряженных с ней элементов, будем считать заданными.

Характеристики

Тип файла
Документ
Размер
334,71 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6934
Авторов
на СтудИзбе
266
Средний доход
с одного платного файла
Обучение Подробнее
{user_main_secret_data}