123044 (717084), страница 2
Текст из файла (страница 2)
Вращающиеся и испытывающие деформацию кручения стержни называют валами. При расчете валов величины скручивающих моментов можно определить по передаваемой мощности и скорости вращения вала из выражения
Te = P/ω = 30P/πn = 9,55 P/n |Нм|, (21)
где Р – мощность, передаваемая валом, Вт; n – угловая скорость вала в оборотах за минуту; ω – угловая скорость в рад/с.
На основании метода сечений крутящий момент Т в произвольном поперечном сечении стержня численно равен алгебраической сумме внешних Те скручивающих моментов, действующих на стержень по одну сторону от рассматриваемого сечения. Когда к валу приложено несколько внешних Те скручивающих моментов, крутящие моменты в сечениях различных участков будут разными. Для наглядности распределения Т по длине скручиваемого стержня и для нахождения опасного сечения с наибольшим крутящим моментом Тmax строят эпюры (графики) крутящих моментов.
При построении эпюры Т проводят ось, параллельную оси стержня. Каждая ордината эпюры в принятом масштабе равна величине крутящего момента, действующего в том сечении, которому соответствует ордината. При расчетах на прочность и жесткость знак T не играет никакой роли, но для удобства построения эпюр будем считать крутящий момент Т положительным, если при взгляде в торец отсеченной части стержня этот момент представляется направленным против хода часовой стрелки. Положительные по знаку крутящие моменты откладывают на эпюре выше оси, отрицательные – ниже.
На рис. 5, б представлена эпюра крутящих моментов Т для схемы нагружения вала тремя внешними моментами Те (рис. 5, а). Отметим, что в сечениях, где приложен внешний скручивающий момент Те, ордината эпюры Т меняется скачком на величину, равную значению этого момента. Как видно из рис. 5, б, максимальный крутящий момент (Tmax = 10 Нм) не всегда равен наибольшему моменту внешних сил (Te max = 15 Нм).
а
б
Те2 = 15Нм
Рис. 5
Определение напряжений при кручении стержней с круглым поперечным сечением
Рассмотрим стержень с круглым поперечным сечением (рис. 6, а), один конец которого закреплен, а другой нагружен парой сил с моментом Те. В результате действия момента внешних сил Те возникает деформация кручения. Наблюдая при кручении характер искажения прямоугольников координатной сетки, нанесенной на боковой поверхности круглого стержня, обнаружили: прямоугольная сетка превратится в сетку, состоящую из параллелограммов, что свидетельствует о наличии касательных напряжений в поперечных, а с учетом закона парности касательных напряжений и в продольных сечениях; контуры поперечных сечений в процессе деформации остаются плоскими, расстояния между ними не изменяются, а первоначальные прямолинейные образующие, нанесенные на боковую поверхность, превращаются в винтовые линии; диаметры торцового сечения повернутся на некоторый угол φ относительно своего начального положения, оставаясь прямой линией. Эти наблюдения позволили составить представление о механизме деформации кручения. Постоянство длины и диаметра деформируемого стержня свидетельствует об отсутствии нормальных напряжений в поперечных и продольных сечениях. Так как в поперечных и в продольных сечениях действуют только касательные напряжения, напряженное состояние в точках скручиваемого стержня представляет собой чистый сдвиг. Поперечные сечения, оставаясь плоскими, поворачиваются вокруг оси стержня относительно друг друга на некоторый угол, сохраняя длину и прямолинейность своих радиусов.
Выделим двумя поперечными сечениями элемент (рис. 6. б) скручиваемого стержня длиной dx. В результате деформации одно сечение повернется относительно другого на угол dφ. Будем считать левое сечение элемента dx неподвижно закрепленным. Тогда dφ – угол поворота правого торцового сечения вокруг продольной оси. Образующую АВОО1 можно представить как параллелепипед длиной dx с бесконечно малыми основаниями АО1 и ВО. В результате деформации этот параллелепипед займет положение АВ'ОО1. Величина ВВ' = γdx = ρdφ представляет собой абсолютный сдвиг грани В на поверхности стержня относительно грани А в направлении, перпендикулярном радиусу стержня. Величина абсолютного сдвига точек основания ОВ параллелепипеда зависит от их расстояния ρ до оси стержня. Сдвиг равен нулю на оси стержня и максимален, т.е. равен ВВ' на поверхности. Угол сдвига соответственно будет равен
γ = (dφ/dx)ρ, (22)
где dφ/dx – относительный угол закручивания. На основании закона Гука для сдвига можно записать
τρ = G·γ = G(dφ/dx)ρ, (23)
где G – модуль упругости материала стержня при сдвиге.
а
б
в
Te
Эпюра τ
Рис. 6
Величина касательных напряжений в каждой точке сечения прямо пропорциональна расстоянию ρ от точки до центра масс сечения. На оси стержня при ρ = 0; напряжение τ = 0; в точках, расположенных в непосредственной близости от поверхности стержня напряжения максимальны. Эпюра изменения τρ вдоль диаметра сечения показана на рис. 5.18, в. Так как величина относительного угла закручивания dφ/dx неизвестна, зависимостью (5.47) для определения касательных напряжений в сечении не пользуются.
Элементарная внутренняя сила, действующая в плоскости сечения на площадку dA с напряжением τρ равна dQ = τρ·dA. Элементарный момент внутренних сил, действующий в плоскости сечения, т.е. элементарный крутящий момент, создаваемый силой dQ относительно центра сечения dT = ρdQ. Сумма этих моментов внутренних сил по всей площади поперечного сечения стержня равна крутящему моменту
.
Так как G = const и dφ/dx = const, то
, (24)
где Ip – полярный момент инерции сечения.
Выразим величину угла закручивания, отнесенного к единице длины стержня
dφ/dx = T/GIp. (25)
с учетом формулы (25) примет вид
τρ = (T/Ip) ·ρ. (26)
При инженерных расчетах интерес представляют наибольшие напряжения в сечении, т.е. напряжения на поверхности стержня при ρ = d/2,
, (27)
где Wp = 2Ip/d– полярный момент сопротивления – отношение полярного момента инерции Ip сечения к расстоянию от наиболее удаленной точки сечения до центра масс.
Полярный момент сопротивления для стержня круглого сечения диаметром d равен Wp ≈ 0,2d3, а для стержня кольцевого сечения с внутренним диаметром d1 – Wp ≈ [0,2(d3 – d14/d)].
Условие прочности стержня при кручении с постоянным по длине поперечным сечением имеет вид
τmax = Tmax/Wp ≤ τadm, (28)
где Тmax – максимальный крутящий момент по длине деформируемого стержня; τadm – допускаемое напряжение при кручении, для стали обычно равно 0,5 … 0,6 допускаемого напряжения σadm при растяжении. Предельный из условия прочности крутящий момент определяют по формуле
Tu ≤ Wp·τadm, (29)
а минимальный диаметр скручиваемого стержня, учитывая что Wp = = 0,2d3 ≥ Tmax/τadm равен
d ≥
. (30)
При сравнении стержней, выдерживающих одинаковый крутящий момент, т.е. имеющих поперечное сечение с равным полярным моментом сопротивления Wp, стержень с наименьшей площадью А поперечного сечения будет обладать меньшей массой. Для сравнения различных сечений применяют безразмерную величину, равную отношению Wp /
. Чем больше эта величина, тем рациональнее по затратам материала сечение. Так, для швеллера, двутавра она равна 0,04 … 0,07, а для круглого кольца с отношением внутреннего диаметра к внешнему равному 0,9 – она равна 1,16. При кручении рациональным является использование стержней с круглым кольцеобразным сечением.
Определение деформаций при кручении стержней с круглым поперечным сечением
Деформация при кручении стержней определяется углом поворота поперечных сечений относительно начального положения. Воспользуемся формулой для выражения угла поворота сечения скручиваемого стержня на участке длиной dx
dφ = (Tdx)/GIp. (31)
Полный угол закручивания на участке длиной ℓ равен
. (32)
Если крутящий момент T и величина GIp, называемая жесткостью при кручении, постоянны на всей длине ℓ, то полный угол закручивания в радианах будет равен
. (33)
Расчет стержней на прочность при кручении не исключает возможности возникновения недопустимых деформаций (углов поворота поперечных сечений) при целостности длинных стержней (деталей). Поэтому часто детали, испытывающие деформацию кручения, рассчитывают не только на прочность, но и на жесткость. Для обеспечения требуемой жесткости необходимо, чтобы наибольший относительный угол закручивания не превосходил допускаемого, т.е.
(dφ/dx) =
≤ (dφ/dx)adm, (34)
где (dφ/dx)adm – допускаемый относительный угол закручивания в радианах на единицу длины стержня. Чаще (dφ/dx)'adm задают в градусах на метр длины, тогда выражение будет иметь вид
(dφ/dx)'adm. (35)
Величину (dφ/dx)'adm выбирают в зависимости от назначения детали и ее размеров. В приборостроении (dφ/dx)'adm принимают в пределах 20 угловых минут на длине 1 м, т.е. (dφ/dx)'adm. =0,33 |º/м|. Из условия жесткости можно определить минимальный диаметр деформируемого стержня, учитывая, что Ip ≈ 0,1d4
(36)
или предельный по величине крутящий момент
Tu ≤19 GIp. (37)
При совместных расчетах на прочность и жесткость при кручении диаметр стержня принимают равным наибольшему из найденных, а предельный крутящий момент Тu ограничивают наименьшим, полученным при проверке по зависимостям.
ЛИТЕРАТУРА
-
Красковский Е.Я., Дружинин Ю.А., Филатова Е.М. Расчет и конструирование механизмов приборов и вычислительных систем: Учебное пособие. М.: – Высш. шк., 2001. – 480 с.
-
Сурин В.М. Техническая механика: Учебное пособие. – Мн.: БГУИР, 2004. – 292 с.
-
Ванторин В.Д. Механизмы приборных и вычислительных систем: Учебное пособие. – М.: Высш. шк., 1999. – 415 с.
















