122981 (717067), страница 2

Файл №717067 122981 (В’язка взаємодія вихорових структур зі зсувною течією) 2 страница122981 (717067) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

На границях розрахункової області накладено наступні граничні умови: на вході до області задано незбурений потік, на виході - м’які граничні умови, на границі, що знаходиться у вільному потоку, задано умови “рухомої кришки без тертя", на твердій поверхні - умови прилипання.

В області побудовано прямокутну сітку з вузлами, розміщеними нерівномірно в обох напрямках таким чином, що розрахункові точки згущуються біля поверхні пластини та її кінців.

При дискретизації рівнянь похідні 2-го порядку апроксимуються різницями 2-го порядку, для конвективних членів у рівнянні (1) застосовано направлені різниці як 1-го, так і 3-го порядку. Останні використано у випадку більш високих чисел Рейнольдса та суттєво нестаціонарної поведінки потоку.

Граничні умови прилипання на твердій поверхні задано як:

. (3)

Для запису чисельного аналога другої формули використано як формулу Тома по двом точкам, так і формулу Йенсена по трьом точкам, а також їх комбінацію.

Побудований алгоритм дозволяє досліджувати нестаціонарні течії, або одержувати стаціонарний режим методом усталення як граничний розв’язок.

У третьому розділі побудований алгоритм використано для розв’язку задачі про стаціонарне обтікання пластини, яка знаходиться в потоку в‘язкої рідини паралельно до напрямку основного потоку, при різних значеннях числа Рейнольдса по довжині пластини від 102 до 105. Показано відповідність одержаних результатів даним експериментальних досліджень, а також теоретичного та чисельного аналізу інших авторів. Одержані результати далі використовуються як початкові умови для розв’язку нестаціонарних задач.

Розв’язано також задачу про обтікання пластини з відсмоктуванням рідини через відвідний канал, розташований під різними кутами до пластини, при числах Рейнольдса по довжині пластини 100500. Пластина знаходиться на нижній границі розрахункової області. На частині границі перед пластиною та позаду її задано граничні умови симетрії потоку: =0, =0.

При чисельному дослідженні одержано стаціонарний режим обтікання. Показано, що в залежності від кута нахилу каналу, інтенсивності відсмоктування, числа Рейнольдса можуть формуватися дві відривні зони - біля нижньої за потоком кромки каналу в основному потоку вище поверхні пластини, і в каналі біля верхньої кромки. Таким чином, структура потоку і параметри пограничного шару в районі каналу суттєво відрізняються від тих, що виникають при моделюванні відмотування через скінчену щілину за допомогою пористої поверхні. Умови існування цих зон при фіксованих двох параметрах і змінному третьому не перетинаються, тобто існує можливість підібрати такі значення параметрів, щоб виключити, або мінімізувати обидві зони.

Четвертий розділ присвячено вивченню взаємодії скінченої пластини з вихорами, що набігають з потоком рідини при ReL=103104. Вивчається так звана паралельна взаємодія, тобто така, коли вісь вихору направлено паралельно до розмаху тіла (пластини). Пластина знаходиться всередині розрахункової області.

Розглянуто декілька способів введення початкового вихору в розрахункову область. Як результат аналізу поведінки різних типів початкових вихорів для подальшого вивчення вибрано формулу так званого вихору Ламба:

. (4)

В початковий момент один або пара вихорів, описуваних формулою (4), накладаються на деякій відстані вгору за потоком від пластини на дані стаціонарного обтікання пластини, одержані при даному числі Рейнольдса за описаним чисельним алгоритмом методом усталення. Подальший розвиток потоку і зміни, які відбуваються з вихорами та пограничним шаром на пластині залежать від початкового діаметра вихору а0, циркуляції Г, положення відносно пластини (початкового зсуву центру по вертикалі).

Процес взаємодії у часі можна розділити на три етапи (Рис.1). На першому етапі початковий вихор, який далі називається конвективним, знаходиться відносно далеко від пластини, його вплив проявляється у виникненні деякої асиметрії течії в районі передньої кромки пластини за рахунок створеного периферією вихору скосу потоку.

На другому етапі ядро вихору проходить поблизу носика пластини. Його початково кругла форма деформується, центр вихору зміщується по вертикалі. Відбувається прискорене зменшення максимальної завихреності в центрі вихору. На пластині може виникати перетікання частини рідини з однієї поверхні до іншої навколо передньої кромки. Це спричинює відрив на цій другій поверхні, з якого формується вихор з протилежним знаком завихреності відносно конвективного вихору. Конвективний вихор розрізається пластиною на дві частини.

На третьому етапі вихор або дві його частини мігрують вздовж різних боків пластини. Їх вплив на місцевий пограничний шар залежить від напрямку і величини поздовжньої компоненти швидкості в тому місці, де вони торкаються пограничного шару (Рис.2). Якщо напрямок співпадає з напрямком течії в пограничному шарі, градієнт швидкості по нормалі до поверхні збільшується, відповідно зростає місцеве тертя на пластині, і навпаки. Від цього ж залежить і швидкість, з якою частини вихору пересуваються вздовж пограничного шару. Тому вони неодночасно сходять з задньої кромки пластини. Вторинний вихор, який зійшов з передньої кромки і також мігрує в пограничному шарі, але з меншою швидкістю, зменшує градієнт швидкості і тертя на поверхні.

Вплив вихору на пограничний шар відображено у зміні з часом інтегрального коефіцієнта тертя пластини (Рис.3). Найбільші зміни відбуваються в тих випадках, коли центр вихору знаходиться на рівні передньої кромки під час другого етапу взаємодії. Зсув початкового положення центра по вертикалі до одного початкового діаметра вгору або вниз викликає не однакові зміни у процесі взаємодії внаслідок різних знаків завихреності у пограничному шарі на різних боках пластини.

Максимальні відхилення виникають на другому етапі, коли наближення будь-якого вихору викликає зменшення тертя за рахунок скошеного потоку навколо передньої кромки.

Зменшення циркуляції при однаковому початковому діаметрі зменшує інтенсивність взаємодії. При збільшенні циркуляції до Г=0.5 відривний вихор стає значно інтенсивнішим, після сходу з передньої кромки його дія на пограничний шар переважає вплив конвективного вихору, який зазнає посиленої дифузії.

При зменшеному числі Рейнольдса ReL=103 вплив проходження вихору значно ослаблюється, помітні зміни в пограничному шарі спостерігаються тільки в момент безпосереднього контакту ядра вихору з передньою кромкою. Відривний вихор не утворюється, а дві частини конвективного вихору виштовхуються на периферію пограничного шару і майже не викликають змін на поверхні пластини.

Результати розрахунків при більшому Рейнольдса ReL=105 показали сильну нестійкість пограничного шару на пластині до зовнішніх збурень. Наближення конвективного вихору викликає утворення і сходження послідовності інтенсивних відривних вихрів біля носика пластини, які продовжують розвиватися і взаємодіяти по мірі пересування за потоком вздовж пластини, і повністю руйнують пограничний шар.

Для пари вихорів однакового початкового діаметра і рівної за модулем, але протилежного знаку циркуляції Г, з’являється додаткова залежність від взаємного розташування вихорів, тобто відстані між центрами по вертикалі і горизонталі. Два вихори, розташовані симетрично відносно пластини, зберігають симетричність потоку на протязі всього часу. Швидкість їх руху як пари і вплив на пограничний шар на другому етапі залежать від напрямку індукованої швидкості на стику вихорів (Рис.4). Під час проходження повз передню кромку кожний з них зберігається як ціле. Тому, потрапляючи до пограничного шару, вони викликають більші ефекти, ніж одиночний вихор з такими ж початковими параметрами. Вплив на тертя на поверхні виявляє ті ж самі закономірності, як і для одиночного вихору під час третього етапу.

Два вихори, в яких центри мали зсув по горизонталі, індукують між собою вектор швидкості, який зсуває пару по вертикалі. Тому один з вихорів може проходити над передньою кромкою майже неушкодженим, а інший зазнає руйнування подібно до випадку одиночного вихору. Вплив на пограничний шар складається з незначної за величиною реакції на проходження першого вихору і набагато інтенсивнішого ефекту вихору, що руйнується.

П’ятий розділ розглядає обтікання пластини з однією виїмкою або системою виїмок в її поверхні. Пластина знаходиться на нижній границі розрахункової області.

У виїмці будується прямокутна розрахункова сітка таким чином, що її вузли знаходяться на стінках виїмки. За початкові умови взято обтікання гладенької пластини, у виїмці в початковий момент всі величини дорівнюють нулю. Кількість вузлів змінювалась для різних розмірів виїмок та режимів потоку, найбільша кількість досягала 110 по глибині і 210 по ширині.

В залежності від параметрів основного потоку та співвідношення геометричних розмірів виїмки та характерних товщин пограничного шару вивчено структуру потоку у виїмці та її вплив на основний потік. При малих та помірних значеннях місцевого числа Рейнольдса (Rex<104) і відносно невеликій ширині виїмок (/b>0.2, де - товщина пограничного шару перед виїмкою, b - ширина виїмки) обтікання має стаціонарний характер. У виїмці формується циркуляційний потік малої інтенсивності навколо одного центра (Рис.5), він відділений від основного потоку нульовою лінією току, через яку не відбувається обміну рідиною між цими зонами потоку.

На верхній границі виїмки відбувається зниження місцевого тертя за рахунок зменшення градієнта швидкості, але на її кромках концентруються зони підвищеної завихреності, як у випадку гострих кромок, так і у випадку заокруглених (Рис.6). Ефект присутності виїмок має локальний характер, обтікання пластини з виїмками в цілому майже не відрізняється від обтікання гладенької пластини.

Досліджено також вплив на структуру течії дискретного відсмоктування/вдуву однакової інтенсивності, яке здійснюється через стінки виїмок на різній відстані від дна. Показано, що локальне зниження градієнта швидкості на ширині виїмки поблизу її верхньої границі компенсується підвищенням завихреності біля вершин виїмок.

При підвищенні числа Рейнольдса і тоншому пограничному шарі у виїмці утворюється складна структура потоку з декількома вихоровими зонами, де рідина має завихреність протилежних знаків. При Reb=15625 біля вихідної кромки знаходиться інтенсивний вихор, в решті об’єму виїмки швидкість значно менша (Рис.7). Вздовж ширини виїмки відбувається розвиток нестійкості зсувного шару, який утворюється з пограничного шару, що сходить з передньої кромки. Це спричинює коливання потоку, які інтенсифікуються при взаємодії зсувного шару з вихідною кромкою, що, в свою чергу, призводить до коливань в пограничному шарі вниз за течією від виїмки (Рис.8).

Коливання біля передньої кромки мають таку ж частоту і узгоджені за фазою з вихідною кромкою, але значно менші за амплітудою.

При Reb=31250 інтенсивні вихорові утворення займають практично всю виїмку (Рис.9). Їх взаємодія між собою та зі зсувним шаром призводить до більш складного характеру коливань (Рис.10), коли відбувається нерегулярна зміна частоти та амплітуди. Крім того, спостерігається втрата фазової узгодженості коливань біля вхідної та вихідної кромок. Збурення основного потоку над виїмкою та нижче за течією є настільки інтенсивними, що повністю змінюють структуру пограничного шару.

Встановлення стаціонарного або квазіперіодичного режиму обтікання відповідає експериментальним результатам, а також деяким теоретичним дослідженням різних авторів для подібних, але не однакових з даними, геометричних форм виїмок. Визначальними параметрами для того чи іншого режиму являються як параметри пограничного шару перед виїмкою, так і співвідношення характерних лінійних масштабів місцевого пограничного шару і геометричних розмірів виїмки. Так, D. Rockwell та інші використовують відношення товщини втрати імпульсу перед виїмкою ** до її ширини b. V. Sarohia (1977, AIAA Journal, Vol.15, №7, P.984-991) використав за критерій появи коливань безрозмірний параметр bRe1/2/, який в його експериментах перевищує 300 при квазіперіодичному режимі.

В Табл.1 наведено ці та інші основні параметри, одержані в результаті чисельного дослідження обтікання напівциліндричної виїмки, які узгоджуються з експериментальними даними при різних режимах обтікання.

Набір параметрів у стовпчику I характеризує стаціонарний режим.

При значеннях параметрів, наведених у стовпчику II, коливання відбувалися на початковому етапі, коли рідина з зовнішнього потоку потрапляла у виїмку, далі ці коливання майже зникали. Цей випадок представляв собою перехідний стан між стаціонарним обтіканням виїмки та режимом зсувного шару.

При обтіканні виїмки потоком з параметрами, виписаними у стовпчику III, одержано стійкі коливання, частотні характеристики яких зберігаються в процесі подальшого розрахунку. При Reb=15625 на ширині виїмки вміщується дві довжини хвилі збурень, у відповідності до D. Rockwell, A. Schachenmann (1981, J. of Fluid Mech., Vol.117, P.425-441). Існує одна частота коливань. Її безрозмірне значення дорівнює f**/U0.014, що відповідає частоті зсувного шару (Knisely C., Rockwell D. Self-Sustained Low-Frequency Components in an Impinging Shear Layer, 1982, Journal of Fluid Mechanics, Vol.116, P.157-186). Отже, при такому режимі основним фізичним механізмом, що відповідає за коливання потоку через присутність виїмки, є конвективна нестійкість зсувного шару.

Характеристики

Тип файла
Документ
Размер
358,42 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6565
Авторов
на СтудИзбе
298
Средний доход
с одного платного файла
Обучение Подробнее