122544 (716928), страница 5
Текст из файла (страница 5)
3.3 Защита световодов (кабелей) от коррозии
Для обеспечения устойчивой связи и сохранности оптического волокна разработано множество конструкций оптических кабелей. Можно условно разделить эти конструкции по наличию в кабеле металлических элементов, выполняющих защитные и (или) силовые функции и оптические кабели, выполненные целиком из диэлектрических материалов и рассмотреть поведение этих групп кабелей во время эксплуатации.
Для механической защиты кабелей, прокладываемых непосредственно в грунт, в конструкцию кабелей закладывают металлические элементы, расположенные под защитной оболочкой: стальную ленточную и проволочную броню, центральный силовой элемент, которые в процессе эксплуатации подвергаются коррозии. В разных регионах, в зависимости от климатических условий, типов грунтов, а так же наличия блуждающих токов, скорость коррозии металлических элементов кабелей разная. Электрическая коррозия возникает от прохождения по металлическим оболочкам кабелей блуждающих электрических токов, источниками которых могут быть рельсовые пути трамвайных и электрифицированных железных дорог, установки дистанционного питания и т.п. В электрических цепях трамвая и электрифицированных железных дорог в качестве обратного провода используются рельсовые пути и из-за значительного сопротивления рельсовых стыков, плохой изоляции их от земли, изменения направлений линий (путей) часть тока ответвляется в землю. При совпадении направления тока с проложенными в земле кабелями ток проникает в металлическую оболочку и проходит по ней до места ответвления к источникам (тяговым подстанциям). Место входа блуждающего тока в кабель называется катодной зоной, а место выхода - анодной. В анодной зоне ток уносит в землю мельчайшие частицы металла, разъедая оболочку.
Почвенная коррозия возникает при взаимодействии металла с окружающей средой (грунтом) и представляет собой электрохимическое разрушение металлических сооружений, вызванное действием почвы, грунта, почвенных и грунтовых вод и т.п. Содержание в грунте или почве минеральных солей, органических веществ, газов и влаги определяет их коррозионную активность. С повышением температуры скорость коррозии металла увеличивается.
Обычно для защиты от коррозии, прежде всего от электрокоррозии, прибегают к пассивным методам защиты, используют в конструкциях кабелей оцинкованные проволоки (трос). Для кабелей, проложенных в условиях химически агрессивных грунтов, помимо пассивной защиты (в том числе и протекторной) применяют активную (катодную защиту) металлических элементов кабелей. Даже при наличии правильно построенной системы активной защиты кабеля, процесс коррозии не останавливается, а только растягивается во времени.
При эксплуатации кабеля в условиях нейтральных почв и отсутствия заболачиваемости (песчаные грунты) коррозия металлических элементов под полимерной оболочкой продолжается. В любом полимерном покрытии присутствуют ионы Н+ и ОН -, которые непосредственно участвуют в развивающемся процессе коррозии. Полимерная оболочка не является препятствием для миграции ионов. После разрушения слоя протекторной защиты процесс коррозии ускоряется.
Глинистые, суглинистые, заболоченные почвы наиболее типичны для России имеют, как правило, РН<7, то есть выраженный кислотный характер. Коррозия в таких условиях эксплуатации происходит значительно быстрее. Результат такой эксплуатации полное разрушение металлических элементов кабеля, что делает невозможным любой ремонт при возникновении отказов. Отказы на таких линиях неизбежны, так как продукты коррозии от металлических элементов кабеля, увеличиваясь в объеме, передавливают оптические модули с волокном, что и приводит к росту затухания и потери сигнала.
Коррозии подвержены силовые элементы самонесущих и подвесных кабелей, выполненных из сталей. Прежде всего, это связано с остаточной влажностью полимеров, хоть это и доли процента у полимеров с гидрофобным эффектом, например полиэтилена, но этого достаточно для возникновения очагов коррозии. В виду большой протяженности кабелей связи, по длине в разных направлениях возникает градиент электрического потенциала, что способствует началу очаговой коррозии.
Радикальный выход из этого имеется, это оптические кабели связи без металлических элементов в конструкции, то есть полностью диэлектрические кабели. Помимо стойкости к коррозии, независимо от условий эксплуатации и химической агрессивности окружающей среды, что реально увеличивает срок эксплуатации, они обладают еще целым рядом преимуществ:
Прежде всего, малый удельный вес, который в 4 - 10 раз меньше удельного веса кабелей, защищенных круглой проволочной броней. Небольшой вес позволяет применять при строительстве волоконно-оптических лазерных сетей (ВОЛС) большие строительные длины с меньшими затратами. При укладке в грунт с применением защитных пластиковых труб, возможно инсталлировать строительные дины более 6км, что сокращает количество сращиваний на линии связи и повышает надежность в эксплуатации.
Инсталлированный в защитную полимерную трубу оптический кабель имеет лучшую защищенность. Стойкость к механическому воздействию пучнистых грунтов выше, чем у кабеля со стальной проволочной броней на 20 - 30% (по результатам сравнительных испытаний на ЗАО "Трансвок").
Вмораживание в лед они переносят значительно легче бронированного кабеля.
Кабель, проложенный в полимерной трубе можно, при необходимости, заменить или проложить рядом добавочный кабель без вскрытия грунта на трассе.
Скорость задувки кабеля в проложенные защитные полимерные трубы составляет до 80 м/мин.
Рост цен на Российский металл создал условия для сопоставления итоговой цены на бронированные кабели для грунта и кабели, предназначенные для задувки в защитные полимерные трубы.
На сегодня в мире несколько десятков фирм, производящих оптические кабели различного назначения. Наиболее известные из них: AT&T, General Cable Company (США); Siecor (ФРГ); BICC Cable (Великобритания); Les cables de Lion (Франция); Nokia (Финляндия); NTT, Sumitomo (Япония), Pirelli(Италия).
Определяющими параметрами при производстве волоконно-оптические кабели (ВОК) являются условия эксплуатации и пропускная способность линии связи.
По условиям эксплуатации кабели подразделяют на:
монтажные
станционные
зоновые
магистральные
Первые два типа кабелей предназначены для прокладки внутри зданий и сооружений. Они компактны, легки и, как правило, имеют небольшую строительную длину.
Кабели последних двух типов предназначены для прокладки в колодцах кабельных коммуникаций, в грунте, на опорах вдоль ЛЭП, под водой. Эти кабели имеют защиту от внешних воздействий и строительную длину более двух километров.
Для обеспечения большой пропускной способности линии связи производятся ВОК, содержащие небольшое число (до 8) одномодовых волокон с малым затуханием, а кабели для распределительных сетей могут содержать до 144 волокон как одномодовых, так и многомодовых, в зависимости от расстояний между сегментами сети.
При изготовлении ВОК в основном используются два подхода:
конструкции со свободным перемещением элементов
конструкции с жесткой связью между элементами.
По видам конструкций различают кабели повивной скрутки, пучковой скрутки, кабели с профильным сердечником, а также ленточные кабели. Существуют многочисленные комбинации конструкций ВОК, которые в сочетании большим ассортиментом применяемых материалов позволяют выбрать исполнение кабеля, наилучшим образом удовлетворяющее всем условиям проекта, в том числе - стоимостным.
3.4 Срок службы источников света
Одним из основных параметров оптических элементов передатчика является срок службы. Он ограничивается тем, что после определенного времени работы выходная световая мощность падает и в дальнейшем не выдерживается ее гарантированное для указанного времени значение даже за счет повышения тока в диоде.
Если оптический передатчик, например на узле связи, должен проработать без замены элементов 10 лет, то для него должен быть гарантирован срок службы около 100000 ч (считая продолжительность года равной приблизительно 10000 ч). Для светоизлучающих диодов на GaAs такой срок службы близок к действительному. Хотя для них редко называют гарантийные сроки службы, но обычны значения в несколько лет. К сожалению, для, лазерных диодов подобные сроки службы не достигнуты. Только в 1970г. в лаборатории появился первый работоспособный лазер, работающий в непрерывном режиме при комнатной температуре, и только в течение 70-х годов были разработаны различные структуры и геометрии, приемлемые для конструирования и изготовления лазеров непрерывного излучения, работающих при комнатной температуре.
Понятно, что достоверных данных о сроке службы можно ожидать только после длительных испытаний большого числа готовых элементов. Чтобы уже сегодня получить какие-то суждения, применяют меры к сокращению времени измерений. При этом лазерные диоды заставляют работать в жестких условиях (как правило, при очень высоких температурах, 50-70 градусов Цельсия). На основании этого судят об ожидаемом сроке службы в нормальных условиях. При этих предположениях в конце 70-х годов многими изготовителями предсказывались ожидаемые сроки службы для лазеров 100000 ч, а в отдельных случаях - свыше 1 млн. ч. И хотя эти цифры сегодня еще не проверены, все же существует гарантия наименьшего срока службы 10000 ч, и этим данным можно доверять.
Проблема срока службы лазеров сегодня еще не решена, но существуют оптимистические прогнозы.
Вероятно, через несколько лет можно будет отказаться от привычной в настоящее время оптической отрицательной обратной связи. Она применяется для того, чтобы скомпенсировать возникающее старение, влияние напряжения и температуры на отдаваемую лазером и светоизлучающим диодом световую мощность.
3.5 Какой источник света предпочтительнее?
В качестве источников света лазер и светоизлучающий диод стоят рядом. Ни для одного из них нельзя назвать решающего преимущества: какой из них лучше, в каждом отдельном случае зависит от области применения.
Существенным фактором, конечно, является цена. Для обоих типов источников с годами она будет, естественно падать, но все же светоизлучающий диод в этом отношении имеет преимущество: он дешевле лазера со сравнимыми параметрами при высококачественной работе, столь необходимой для техники связи. Поэтому для систем местной связи, которые требуют относительно малых скоростей передачи (до 2 Мбит/с и ниже), будут всегда применяться светоизлучающие диоды и в основном совместно со световодами с относительно большой апертурой (например, с кварцевыми волокнами в пластмассовой оболочке). Таким образом можно ввести в волокно существенно большую часть излучаемого света.
Типичные параметры полупроводниковых источников света.
Второй важный параметр светопередатчика: ширина полосы модуляции. Светоизлучающие диоды прежде всего "медлительнее" лазеров. В зависимости от конструкции, имеющиеся сегодня в распоряжении типы, как правило, могут быть модулированы частотами 30 - 50 Мгц. Если же необходимо передать быстрые двоичные сигналы со скоростью свыше 30 Мбит/с, то почти всегда применяется лазер ввиду его большой световой мощности. Для него граница модуляции лежит в пределах нескольких сотен мегагерц, а иногда выше 1 ГГц. Хотя светоизлучающий диод еще не достиг границ своих возможностей (в настоящее время уже имеются отдельные типы диодов, модулируемых со скоростью 150 Мбит/с; по прогнозам до 1 Гбит/с), все же лазер имеет преимущество в виде более высокой выходной мощности (см. табл.).Наконец, необходимо принять во внимание, что ширина передаваемой полосы частот ограничивается не только быстродействием самого излучающего диода. Здесь важным фактором являются также дисперсионные свойства световода. Помимо этого необходимо обратить внимание еще на одно свойство излучающего диода: большая ширина спектра излучения светоизлучающего диода в сочетании со световодом может привести к ограничению ширины передаваемой полосы частот. Это свойство может играть существенную роль, когда речь идет о том, чтобы максимально использовать высокую пропускную способность световодов, а уширение импульса из-за дисперсии материала допускать в минимальных пределах.
В настоящее время появилось четвертое поколение оптических передатчиков, давшее начало когерентным системам связи - то есть системам, в которых информация передается модуляцией частоты или фазы излучения. Такие системы связи обеспечивают гораздо большую дальность распространения сигналов по оптическому волокну. Специалисты фирмы NTT построили безрегенераторную когерентную ВОЛС STM-16 на скорость передачи 2.48832 Гбит/с протяженностью в 300 км, а в лабораториях NTT в начале 1990 года ученые впервые создали систему связи с применением оптических усилителей на скорость 2.5 Гбит/с на расстояние 2223 км.
Появление оптических усилителей на основе световодов, легированных эрбием, способных усиливать проходящие по световоду сигналы на 30 dB, дало начало пятому поколению систем оптической связи. В настоящее время быстрыми темпами развиваются системы дальней оптической связи на расстояния в тысячи километров. Успешно эксплуатируются трансатлантические линии связи США-Европа ТАТ-8 и ТАТ-9, Тихоокеанская линия США-Гавайские острова-Япония ТРС-3. Ведутся работы по завершению строительства глобального оптического кольца связи Япония-Сингапур-Индия-Саудовская Аравия-Египет-Италия.
3.6 Преобразование света в электрический ток
На конце линии необходимо восстановить первоначальную информацию (передаваемый речевой сигнал или телевизионное изображение).
Если бы человечество не обращались к технике электрической связи и с самого начала проектировало и вводило в действие оптическую систему передачи, то сейчас, наверное, у нас была бы хорошо развитая техника, которая непосредственно преобразовывала бы световые сигналы в акустические или изображения. Возможно, через несколько лет подобные решения будут осуществлены. На сегодняшний день решения этой проблемы нет. Все существующие способы преобразования сигналов выполняются на основе электрических сигналов. Телевизионное изображение создается путем управления электронными лучами в кинескопе с помощью электрических сигналов, акустический сигнал в телефонных трубках образуется за счет электрического тока.
На магистральных линиях было бы хорошо использовать усилитель света. К сожалению, такого у нас пока не имеется. Принцип усиления света (прежде всего это принцип лазера: вынужденное излучение при возбуждении) известен, но еще не готов к техническому воплощению.
Таким образом, и в промежуточном усилителе остается задача преобразования и регенерации электрического сигнала (усиление или восстановление нужной формы импульса при двойных бинарных сигналах). Этот восстановленный электрический сигнал вторично используют для управления лазером или светоизлучающим диодом, который теперь излучает усиленный световой сигнал.
3.7 Фотодиоды используют внутренний фотоэффект
В оптических системах связи, в которых на выходе каждого отдельного световода должен быть установлен чувствительный фотоприемник, вводятся два прибора которые могут, быть выполнены методом микроэлектронной технологии. Речь идет о p-i-n фотодиоде и лавинном фотодиоде. Оба используют внутренний фотоэффект, который проявляется в этом специальном случае непосредственно в окрестностях р-n перехода.
3.8 Классификация волоконно-оптических кабелей
В настоящее время у разных производителей, поставщиков и инсталляторов ВОК существует некоторая путаница в классификации типов волоконно-оптических кабелей. Среди многообразия попыток классифицировать ВОК заслуживает внимания классификация, основанная на опыте работы и здравом смысле, не содержащая англоязычных терминов и экзотических кабелей для локальных сетей типа трансатлантических.
Сам принцип деления волоконно-оптических кабелей по способам прокладки и назначению в случае применения в локальных сетях представляется неудачным.
Вот пример такой распространенной (Выбор и поставку волоконно-оптических кабелей для конкретного применения, как правило, мы осуществляем в индивидуальном порядке при заказе на монтажные работы. и при этом неудачной) классификации волоконно-оптических кабелей:
кабели внешней прокладки (outdoor cables);
кабели внутренней прокладки (indoor cables);
кабели для шнуров.
По назначению оптические кабели делятся на линейные и внутриобъектные. Линейные, в свою очередь, подразделяются на:
распределительные (оптическая сеть доступа);
соединительные (соединительные линии МТС);
междугородные (магистральные и зоновые ВОЛС).
Внутриобъектовые кабели делятся на абонентские и станционные. По условиям использования оптические кабели подразделяются на подвесные, подземные и подводные.
Подвесные кабели делятся на:
самонесущие:
волоконно оптические кабели со встроенным несущим тросом;
волоконно оптические кабели, армированные кевларовыми нитями;
волоконно оптические кабели, встроенные в грозозащитный трос;
волоконно оптические кабели, встроенные в фазный провод;
волоконно оптические кабели, которые наматываются на грозозащитный трос или фазный провод;
Подземные кабели подразделяются на:
волоконно оптические кабели для прокладки непосредственно в грунт и в кабельную канализацию;
волоконно оптические кабели, облегчённой конструкции для прокладки в защитных пластиковых трубках;
волоконно оптические кабели, для прокладки в туннелях, шахтах
Помогает ли такая классификация оптических кабелей в выборе кабеля для непосредственного применения? Практически нет.
Вот пример реальной кабельной трассы на промышленном предприятии, где нужна прокладка оптоволокна: из центра коммутации здания А по внешней стене, затем проброс по воздушной линии до здания Б, по крыше, спуск в телефонную канализацию, затем по подвалу к центру коммутации здания В.
Если придерживаться стандартной классификации, то необходимо только на одной, достаточно непротяженной (в нашем случае около 600 метров) кабельной трассе использовать 4-5 видов волоконно-оптического кабеля, соединяя их проходными муфтами. Дороговато будет, да и ненадежно (сколько лишних точек сращивания!). Можно ли в таком случае использовать один, максимум два типа оптического кабеля? Можно и нужно, если, например, не смотреть на кабель с кевларовыми нитями исключительно как на «подвесной». Если применить при этом негорючую оболочку, то такой кабель вполне сгодится и как «внутриобъектовый». Конечно, нужно учитывать еще несколько факторов. Например, если в подвале могут быть грызуны то, нужна броня из стальной ленты или проволок.
Взамен распространенной, но не эффективной классификации волоконно-оптических кабелей применительно к локально-вычислительным сетям некоторые авторы предлагают более удачную классифицируются по конструктивным особенностям и характеристикам по отношению к окружающей среде. Выбор кабеля производится индивидуально для каждой трассы, исходя из условий прокладки и эксплуатации ВОЛС.
Пример более удачной классификации волоконно-оптических кабелей следующий:
По типу оптических волокон
с одномодовыми волокнами (SM)
с многомодовыми волокнами (MM)
комбинированный ( SM+MM)
По типу центрального силового элемента
со стальным тросом
с пластиковым тросом
с центральной трубкой
По типу буфера в модулях
с плотным буфером
со свободным буфером
По типу силового элемента в оболочке
небронированный
с кевларовыми нитями
бронированный стальной лентой
бронированный проволокой
По наличию встроенного троса
со встроенным несущим тросом
без встроенного несущего троса
По величине допустимого растягивающего усилия
2,7 кН
4,0 кН
6,0 кН
8,0 кН
9,0 кН
12,0 кН
15,0 кН
20,0 кН
По диапазону температуры эксплуатации, град.
от -12 до +75
от -20 до +60
от -40 до +60
от -60 до +60
от -60 до +70
По огнестойкости оболочки
с горючей оболочкой
с негорючей оболочкой
Примечание. Значения температуры эксплуатации и величины растягивающего усилия у разных производителей могут немного различаться.
Если учесть все указанные типы кабелей, а также число оптических волокон в кабеле, которое обычно при применении в локальных сетях составляет от 4 до 24, легко подсчитать, что число вариантов спецификаций волоконно-оптического кабеля превышает 100000.
Примеры оптических кабелей
|
|
| |||
| |||||
Кабели с броней из стальной оцинкованной проволоки являются самыми защищенными от внешних воздействий и могут прокладываться без дополнительной защиты как в грунт, так и на дно рек |
| |
| |||
| |||||
Более легкие и гибкие, чем кабели для прокладки в грунт, городские кабели защищены от грызунов стальной ламинированной лентой и могут прокладываться без дополнительной защиты в кабельную канализацию |
| |
| |||
| |||||
Самый легкий и гибкий оптический кабель для внешней прокладки. Идеален для прокладки в пластмассовых трубопроводах |
Самонесущий кабель |
|
|
Кабели с силовыми элементами из специальных высокопрочных нитей могут подвешиваться за внешнюю оболочку
| |
| |||
| |||||
Легкие кабели с вынесенным силовым элементом для воздушной подвески |
Основные характеристики типовых кабелей обычно сходны у различных компаний.
Волоконно-оптические кабели в броне из круглых стальных оцинкованных проволок и защитном шланге из полиэтилена - для прокладки через водные преграды, непосредственно в грунте, в кабельной канализации и других линейных сооружениях.
Волоконно-оптические кабели с оптическими волокнами в центральной трубке, в броне из круглых стальных оцинкованных проволок и защитном шланге из полиэтилена - для прокладки через водные преграды, непосредственно в грунте, в кабельной канализации и других линейных сооружениях.
Волоконно-оптические кабели в стальной ленточной гофрированной броне, защитном шланге из полиэтилена - для прокладки в кабельной канализации, трубах, блоках, коллекторах, тоннелях, на мостах и эстакадах, в станционных шахтах.
Небронированные волоконно-оптические кабели в полиэтиленовой оболочке для прокладки в пластмассовых трубах и внутри зданий.
Волоконно-оптические кабели полностью диэлектрические подвесные самонесущие для подвески на опорах воздушных линий связи и контактной сети электрифицированных железных дорог и городского транспорта
Волоконно-оптические кабели подвесные с выносным силовым элементом для подвески на столбах освещения
По типу оптических волокон кабели подразделяются на одномодовые и многомодовые.
Число оптических волокон в кабелях обычно составляет от 4 до 216.
Срок службы волоконно-оптических кабелей: как правило, не менее 25 лет.
По требованию заказчика кабели могут изготавливаться в защитной оболочке из материала, не распространяющего горения.
В производстве волоконно-оптического кабеля на российских заводах-изготовителях используется оптическое волокно ведущих зарубежных фирм.
У каждого завода-производителя свой тип обозначения и маркировки волоконно-оптических кабелей, а также имеются отличия в параметрах технических характеристик.
Для примера сравним по одной марке кабелей СП ЗАО «Москабель-Фуржикура» (марка - ОМЗКГМ), выполняемых по ТУ 16.К87-001-00 и ЗАО «Севкабель» (марка - ДАС (DAC), выполняемых по ТУ 3587-007-05755714-98.
Рекомендуемые условия прокладки
Марка кабеля | Конструктивные элементы, образующие марку кабеля | Рекомендуемые условия прокладки | ||||
«Москабель- Фуржикура» | «Севкабель» | «Москабель- Фуржикура» | «Севкабель» | «Москабель- Фуржикура» | «Севкабель» | |
ОМЗКГМ | ДАС (DAC) | ЦСЭ из стеклопластикового стержня, вокруг которого скручены ОМ, содержащие до 12 ОВ каждый, кордель заполнения, внутренняя оболочка ПЭ, броня из круглых стальных оцинкованных проволок, наружная ПЭ оболочка | Диэлектрический ЦСЭ, алюмополиэтиленовая оболочка, однослойная броня из стальных проволок, наружная полиэтиленовая оболочка | В грунтах всех категорий, кроме подверженных мерзлотным деформациям, в кабельной канализации, трубах, блоках, коллекторах, тоннелях на мостах и в шахтах, через неглубокие болота и несудоходные реки | В грунтах всех групп при прокладке в открытую траншею, грунтах групп 1-3 при прокладке ножевым кабелеукладчиком (кроме грунтов, подверженным мерзлотным деформациям). В кабельной канализации, ЗПТ, блоках, по мостам и эстакадам при наличии особо высоких требований по механической устойчивости. В тоннелях и коллекторах, включая болота и несудоходные реки |
Конструктивные параметры
Марка кабеля | Диаметр кабеля, мм | Масса кабеля, кг/км | |||
«Москабель- Фуржикура» | «Севкабель» | «Москабель- Фуржикура» | «Севкабель» | «Москабель- Фуржикура» | «Севкабель» |
ОМЗКГМ | ДАС (DAC) | 12,9…20,8 | 16,5…26,0 | 258…859 | 471…1011 |
Электрические параметры
Параметр | Ед. измерения | Значение | Объект нормирования | Марка ОК | |||||||
«Москабель- Фуржикура» | «Севкабель» | «Москабель- Фуржикура» | «Севкабель» | «Москабель- Фуржикура» | «Севкабель» | «Москабель- Фуржикура» | «Севкабель» | «Москабель- Фуржикура» | «Севкабель» | ||
Электрическое сопротивление изоляции постоянному току | МОм х км | 2000 | 2000 | Между металлическими элементами (броней) и землей (водой) | ОМЗКГМ | ДАС (DAC) | |||||
Испытательный импульсный ток длительностью 60 сек | кА | 105 | 105 | Металлические элементы | |||||||
Испытательное напряжение наружной оболочки, в течение 5 с: - переменный ток частотой 50 Гц; - постоянный ток | кВ | 10 20 | 10 20 | Между соединенными вместе металлическими элементами и землей (водой). То же. |
Механические параметры
Параметр | Ед. измерения | Значение | Марка ОК | |||||||||||
«Москабель- Фуржикура» | «Севкабель» | «Москабель- Фуржикура» | «Севкабель» | «Москабель- Фуржикура» | «Севкабель» | «Москабель- Фуржикура» | «Севкабель» | |||||||
Стойкость к статическим растягивающим усилиям, не менее | кН | 7,0 | 7,0 | ОМЗКГМ | ДАС (DAC) | |||||||||
Стойкость к раздавливающим усилиям, не менее | кН | кН/см | 0,6 | 1,0 | ||||||||||
Стойкость к динамическим изгибам | 20 циклов изгибов на угол +90º с радиусом, равным 20 номинальных диаметров кабеля при температуре - 10ºС | |||||||||||||
Стойкость к перемоткам | 10 перемоток с барабана на барабан с радиусом шейки, равным 20 номинальным диаметрам ОК | |||||||||||||
Стойкость к осевому кручению | 10 циклов осевых кручений на угол +360º на длине (4+0,2)м при нормальной температуре окружающей среды | |||||||||||||
Стойкость к однократному удару | Дж | 50 | 20 | |||||||||||
Стойкость к вибрационной нагрузке | м/с² | При ускорении до 40 в диапазоне частот 10…200 Гц | ОМЗКГМ | ДАС (DAC) | ||||||||||
Стойкость к продольной водопроницаемости | м | В соответствии с ГОСТ Р МЭК 794-1 при избыточном давлении 9,8 кПа |
Климатические параметры
Параметр | Ед. измерения | Значение | Марка ОК | |||||
«Москабель- Фуржикура» | «Севкабель» | «Москабель- Фуржикура» | «Севкабель» | «Москабель- Фуржикура» | «Севкабель» | «Москабель- Фуржикура» | «Севкабель» | |
Рабочий диапазон температур | ºС | -40…+50 -60…+70 | ОМЗКГМ | ДАС (DAC) | ||||
Стойкость к циклической смене температур | ºС | В диапазоне от низкой до высокой рабочих температур | ||||||
Стойкость к воздействию плесневых грибов, росы, атмосферных осадков, инея, соляного тумана, солнечного излучения | В соответствии с ГОСТ 20.57.406 |
Если говорить в отношении предпочтения того или иного производителя («Москабель-Фуржикура» или «Севкабель»), исходя из сравнительных характеристик рассмотренных однотипных марок кабелей и принимая во внимание отличия по параметрам, отмеченным синим шрифтом, можно считать, что ввиду малых отличий, решающим фактором при выборе может быть скорее цена.
IV. Помехи
Понятие, которое имеет решающее значение для функционирования каждой системы связи,- помехи.
Насколько не одинаковы неисправности системы из-за потерь в сети питания или отказов каких-либо элементов, встречающиеся в каждом приборе или устройстве, настолько же не одинаковы помехи, вызванные электромагнитными полями. Это поля, создаваемые плохо экранированными электродвигателями, радиоизлучениями автомобилей, часто вызывающими сильные помехи в радио или телевизионной аппаратуре, и т.п.
В условиях отсутствия шумов разработчик мог бы безгранично увеличивать длину усилительного участка. Требуется только соответственно увеличивать мощность сигнала, поступающего на вход приемника. Но шум существует и уменьшает чувствительность каждого приемника и возможности каждого усилителя. Если мощность полезного сигнала на входе меньше мощности помех, то сигнал перекрывается ею и не может быть выделен приемным устройством или усилен. Даже когда сигнал и помехи имеют почти одинаковую мощность, шум становится довольно значительным. Причины и источники шумна разнообразны. К ним относятся корпускулярные шумы электрического тока (дробовой шум), температурные шумовые процессы, шумы квантования световых пучков. Источник света сам вносит в систему шумовые составляющие, добавляют их также фотодиод и оконечный электронный усилитель. Если используется лавинный фотодиод, то возникают дополнительные шумовые составляющие из-за эффекта умножения в этом элементе.
Если рассмотреть электрический сигнал на выходе фотоприемника, то можно установить, что различные шумовые источники проявляют себя в нем тем или иным способом. Вместо чистой формы сигнала, которой модулировалась выходная мощность светового сигнала передатчика, на вход приемника поступает сигнал, амплитуда которого случайным образом более или менее меняется вблизи данного значения. Средние значения соответствуют истинной форме переданного сигнала, но мгновенные значения отклоняются от заданного вследствие влияния помех. Первоначальный сигнал можно лишь приблизительно выделить из суммы полезного и мешающего сигналов.
4.1 Длина оптической линии
Основная задача - обеспечение того, чтобы посланный сигнал с достаточной для соответствующей цели точно воспроизводился в приемнике, т. е. разработчик будет пытаться по возможности приблизиться к первоначальной (правильной) форме сигнала путем получения среднего значения по возможно большому количеству мгновенных значений сигнала, искаженного помехой. Для этого служат, различного рода электрические фильтры. Конечно, для усреднения амплитуды сигнала можно использовать только такое количество мгновенных значений сигнала, чтобы сами полезные изменения сигнала не были сглажены и не оказались из-за этого потерянными. То, что остается после этой фильтрации, более не уничтожается. С этим разработчик системы должен считаться и, например, выбирать длину передающей линии настолько короткой, чтобы мощность сигнала не оказалась близкой к мощности шумового фона.
Для инженера связи из этой модели формирования среднего значения следует важный вывод: качество передачи сигнала при одинаковом уровне помех тем лучше, чем медленнее изменяется сигнал (так как тем большими могут быть интервалы времени усреднения и тем точнее получаемый результат) и чем меньше необходимая для данной цели ширина полосы частот (пропускная способность).
Из этих рассуждений ясно, что для фотоприемника имеется нижняя граница мощности принимаемого сигнала. На этой границе мощность сигнала в определенное число раз больше суммарной мощности шумов, которые появляются в приемнике. Этот коэффициент обозначается как отношение сигнал/шум и выражается в децибелах. Если необходимо передать двоичные сигналы, то достаточно, например, отношения сигнал/шум (в электрическом сигнале), равного 18 Дб. Это означает, что полезная мощность приблизительно в 63 раза больше, чем наложенная шумовая мощность, что позволяет осуществить достаточно достоверное распознавание одиночного импульса. Если, напротив, необходимо передать непрерывные сигналы, которые реагируют на помехи гораздо чувствительнее, чем двоичные, то отношение сигнал/шум должно быть выше и в зависимости от рода сигнала и требуемого его количества должно достигать 30 - 60 дБ.
По крайней мере, существуют два других фактора, которые, как и ослабление, ограничивают длину усилительного участка: материальная дисперсия и модовая дисперсия. С увеличением длины усилительного участка они вызывают уширение посланного импульса и при этом тем большее, чем выше пропускная способность линии. Так как модовая дисперсия зависит от конструкции световода (для световода с градиентным профилем показателя преломления она гораздо меньше, чем при ступенчатом показателе), то тип применяемого световода при заданной пропускной способности линии, пожалуй, гораздо сильнее ограничивает дальность действия, чем ослабление. Таким же образом, ограничивая длину линии световода с малой модовой дисперсией и малым ослаблением, можно влиять на ширину спектра источника света (например, использовав светоизлучающий диод).
Итак, на вопрос о дальности действия оптической связи однозначного ответа может не быть, так как имеется ряд факторов, влияние которых необходимо учитывать при проектировании.
4.2 Сращивание отдельных участков кабелей
Особый класс образуют кабели, встроенные в грозотрос.
Отдельно рассмотрим способы сращивания строительных длин кабелей.
Сращивание строительных длин оптических кабелей производится с использованием кабельных муфт специальной конструкции. Эти муфты имеют два или более кабельных ввода, приспособления для крепления силовых элементов кабелей и одну или несколько сплайс-пластин. Сплайс-пластина - это конструкция для укладки и закрепления сращиваемых волокон разных кабелей.
После того, как оптический кабель проложен, необходимо соединить его с приемо-передающей аппаратурой. Сделать это можно с помощью оптических коннекторов (соединителей). В системах связи используются коннекторы многих видов.
Конструкция фиксатора, например, фирмы "Push-Pull" обеспечивает подключение коннектора к розетке наиболее простым образом - на защелке. Защелка-фиксатор обеспечивает надежное соединение, при этом не нужно вращать накидную гайку. Важное преимущество разъемов с фиксацией Push-Pull - это высокая плотность монтажа оптических соединителей на распределительных и кроссовых панелях и удобство подключения.
4.3 Новейшие электронные компоненты систем оптической связи
В последние годы наряду с когерентными системами связи развивается альтернативное направление: солитоновые системы связи. Солитон - это световой импульс с необычными свойствами: он сохраняет свою форму и теоретически может распространяться по "идеальному" световоду бесконечно далеко. Солитоны являются идеальными световыми импульсами для связи. Длительность солитона составляет примерно 10 трилионных долей секунды (10 пс). Солитоновые системы, в которых отдельный бит информации кодируется наличием или отсутствием солитона, могут иметь пропускную способность не менее 5 Гбит/с на расстоянии 10 000 км.
Такую систему связи предполагается использовать на уже построенной трансатлантической линии ТАТ-8. Для этого придется поднять подводный ВОК, демонтировать все регенераторы и срастить все волокна напрямую. В результате на подводной магистрали не будет ни одного промежуточного регенератора.
Перспективными волноводами можно считать также и созданные совсем недавно дырчатые волноводы, т.е. волноводы с оболочкой, представляющей собой двумерный набор плотно упакованных и вытянутых при высокой температуре полых стеклянных волокон. Их можно считать одним из наиболее значительных достижений оптических технологий за последние пять лет. Замечательные свойства этих волноводов детально изучаются, область их практических приложений неуклонно расширяется, стремительно растет число научных групп, использующих дырчатые волноводы в своих исследованиях, в частности для абонентских сетей.
Заключение
Еще в середине 70-х годов существовала уверенность в том, что эта часть сети, состоящая из отдельных проводников, должна остаться металлической из экономических соображений. Впоследствии это мнение изменилось.
Около 70% меди, расходуемой на кабели связи, приходится на абонентские сети, хотя диаметры проводников выбраны настолько малыми, насколько это возможно. Если бы в будущем отрезки линий, передающих сигналы, выполнялись на оптических элементах, то можно было бы сэкономить только лишь треть затрат на медь, а абонентские сети необходимо было бы опять строить в каждом квартале новостроек.
Дальнейшим важным направлением являются постоянно растущие информационные потоки в промышленности, хозяйстве, а также в быту.
Радио- и телевизионная связь станут в ближайшем будущем встречаться в каждом доме, и необходимость устройства абонентских вводов во многих странах превышает их экономические возможности. Только в учреждения и на заводы в ближайшие годы придут новые службы, польза и рентабельность которых сегодня общепризнанны: телекопирование, конторский телетайп, электронная почта, передача данных в самом широком смысле слова, телеметрия, телеуправление и мониторное оборудование для различных технических устройств. Для индивидуальных абонентов техника также движется вперед. Уже испытываются известные во многих странах мира способы, с помощью которых абонент сможет выбрать тексты, таблицы, диаграммы и воспроизвести их на собственном экране.
Абонентские линии, которые мы сегодня прокладываем, должны быть подготовлены для многих потребностей последующего десятилетия. Нынешнюю систему электрической связи можно использовать только в качестве речевого канала с небольшой полосой пропускания. Такая связь пригодна для конторского телетайпа, а также для передачи данных. Уже при телекопировании необходимо длительное время копирования - в лучшем случае свыше одной минуты на каждую страницу формата АЧ, и каждое повышение скорости требует увеличения полосы пропускания. До конца 80-х годов - таков прогноз британского ведомства связи - в Англии до 50% почты должно передаваться электронным образом.
Но окончательно необходимо будет отказаться от сегодняшнего абонентского симметричного кабеля с медными проводниками, если потребуется хотя бы одно-единственное движущееся изображение. Тогда будет необходим дорогой коаксиальный кабель или световод.
Такой прогноз развития в будущем является основой, которую учитывают при создании широкополосной связи для каждой квартиры, по крайней мере, с близлежащей коммутационной станцией. Как должна выглядеть техника оптической связи будущего, в частности упомянутая сеть оптической связи, какие и сколько различных сигналов должно быть в этой многоцелевой абонентской сети и как они должны будут передаваться, никто еще сегодня конкретно и окончательно сказать не может. Хотя некоторые рабочие положения сформулированы. Сообразно с ними телефонная связь (разговор и вызывной сигнал) должна осуществляться в обоих направлениях, а кроме того, должен передаваться и телевизионный сигнал. В соответствии с этим каждый абонент получает отдельную оптическую широкополосную линию, к которой, прежде всего, подключен его телефон и затем, возможно, видеотелефон и другие высокоскоростные устройства.
Ряд вопросов при этом останется открытым. Один из них - энергоснабжение аппарата абонента. Телефон, питаемый сегодня через сигнальные проводники станционного источника питания, в дальнейшем не будет иметь электрической связи с коммутационной станцией. Таким образом он должен будет получать энергию от местной силовой сети. К этой идее привыкли. Обычно электрическая передающая техника будущего ставит те же требования автономного электропитания, правда, по другим причинам. При этом электрическая развязка (абонентов и коммутационной станции), которая обусловлена применением световодной техники, окажется целесообразной с экономической точки зрения.
Оптическая абонентская сеть, широкополосный аппарат абонента в каждой квартире более не являются утопией.
Волоконно-оптические линии связи в настоящее время считается самой совершенной физической средой для передачи информации.
ВОЛС целесообразно использовать при объединении локальных сетей в разных зданиях, в многоэтажных и протяженных зданиях, а также в сетях, где предъявляются особо высокие требования к информационной безопасности и защите от электромагнитных помех.
Волоконная оптика и ВОК обладают рядом безусловных преимуществ.
Широкополосность ВОЛС оптических сигналов, обусловленная чрезвычайно высокой частотой несущей (Fo=10 14 Гц). Это означает, что по волоконно-оптической линии связи (ВОЛС) можно передавать информацию со скоростью порядка 10^12 бит/с.
Очень малое затухание ВОЛС светового сигнала в волокне, что позволяет строить волоконно-оптические линии связи (ВОЛС) длиной до 100 км и более без регенерации сигналов.
Устойчивость ВОЛС к электромагнитным помехам со стороны окружающих медных кабельных систем, электрического оборудования (линии электропередачи, электродвигательные установки и т.д.) и погодных условий.
Защита волоконно-оптических линий связи (ВОЛС) от несанкционированного доступа – информацию, передающуюся по волоконно-оптическим линиям связи, практически нельзя перехватить неразрушающим способом.
Электробезопасность волоконно-оптических линий связи (ВОЛС). Из-за отсутствия искрообразования оптическое волокно повышает взрыво- и пожаробезопасность сети, что особенно актуально на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска.
Невысокая стоимость волоконно-оптических линий связи (ВОЛС) – волокно изготовлено из кварца, основу которого составляет двуокись кремния, широко распространенного, а потому недорогого материала, в отличие от меди.
Долговечность ВОЛС – срок службы волоконно-оптических линий связи составляет не менее 25 лет.
К недостаткам можно отнести, пожалуй, только
Относительно высокую стоимость активных элементов ВОЛС, преобразующих электрические сигналы в свет и свет в электрические сигналы.
Относительно высокая стоимость сварки оптических волокон – для этого требуется прецизионное, а потому дорогое, технологическое оборудование. Как следствие, при обрыве оптического кабеля затраты на восстановление ВОЛС выше, чем при работе с медными кабелями.
Список литературы
Глазер В. "Световодная техника" М. Энегроатомиздат 1985 г.
Савельев И. В. "Курс общей физики" М. Наука 1978, 1982 г.
Оптические кабели связи российского производства. Справочник- М.: Эко-трэнд, 2003.–288 с.
Для подготовки данной работы были использованы материалы с сайта http://ref.com.ua
7>