112757 (710920), страница 2

Файл №710920 112757 (Математические предложения и методика их изучения) 2 страница112757 (710920) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

В процессе обучения у школьников должно быть сформировано следующее понимание термина “доказательство”:

1)допускаются истинными некоторые отношения и факты (которые составляют условие теорем);

2)от условия к заключению строится логическая последовательная цепочка предложений, каждое из них должно быть обосновано с помощью суждений, выраженных в условии, определений известных понятий, аксиом или ранее доказанных утверждений;

3)заключение является последним звеном в цепочке этих логически расположенных предложений.

Например: в курсе математики 5-6 классов этому способствуют задачи с таким содержанием: “Дополнить приведённое доказательство математических утверждений, выполняя указанные выше требования, предъявляемые к математическим доказательствам”.

“Если a:b=c, то a=bc. Доказать”

Условие: a:b=c. Заключение: a=bc.

Предложение

обоснование

1)a:b=c

2)a=bc

1) условие

2) почему?

В школьном обучении некоторые фрагменты математической теории излагаются содержательно (неформально), поэтому доказательство также содержательны, т.е. в них используются обычные рассуждения, а правила логического вывода не фиксируются. Среди таких правил можно выделить:

1)правило заключения: P; “если P, то Q” - вывод: “Q”.

2)правило введения конъюнкции: P; Q – вывод “P и Q”.

3)правило силлогизма: “если P, то Q”; “если Q, то R” - вывод “если P, то R”.

4)правило отрицания: “если A, то B”, “не B” - вывод “не А”.

5)правило контрапозиции: “если A, то B” - вывод “если не B, то не A”.

6)правило расширенной контрапозиции: “если A и B, то C” - вывод “если A и не С, то не B”.

7)Сведение к абсурду – “если Г, А=>B”, “Г, А=>не B” - вывод “Г=> не А”, где Г – список посылок.

Правило контрапозиции и сведение к абсурду широко применяется в косвенных доказательствах, примером которого может служить доказательство от противного.

Косвенное доказательство некоторой теоремы Т состоит в том, что исходит из отрицания Т, называемого допущением косвенного доказательства и выводят из него ложное заключение применением правила сведения к абсурду.

Например: если а||с, и b||с, то a||b. Допущение: a||c и b||c, но a не|| b. Согласно определению параллельных прямых получаем: если a не|| b => с (са сb), поэтому по правилу введения конъюнкции: из а||c и b||c. с (са сb) имеем: a||c и b||c и с (са сb). Но по аксиоме параллельных прямых (из Т) неверно, что: a||c и b||c и с (са сb), т.е. из наших допущений вывели противоречие, которое и доказывает теорему.

Специальные формы косвенного доказательства:

1)доказательство методом исключения: надо доказать предложение: “если B, то Q1”, иначе: Г, Р=>Q1: наряду с Q1 рассматриваются все остальные возможности, которые являются: аксиомой, определением, ранее доказанной теоремой или следствием из них. Затем доказывается, что каждая из остальных возможностей, кроме Q1, ведёт к противоречию.

Например: если каждая плоскость, пересекающая прямую а, пересекает и прямую b, то эти прямые параллельны.

Требуется установить следование: “Г,Р” Q не ||; “Г” и (если a, b) a||b.

Исходим из предложений: Q1:a||b; Q2:ab; Q3: a-b – скрещиваются.

Допущение Q2:ab даёт (a и ) (достаточно провести произвольную плоскость α через b, отличную от плоскости определяемой пересекающимися прямыми a и b) или: так как (a и ) не для всякой плоскости (если a, то b), получаем “если Q2, то ”: если ab, то не для всякой если a, то b).

Из “если Q2, то ” и “Р” по правилу отрицания имеем: : .

Аналогично допущение Q3: “a-b скрещиваются” приводит к не любой плоскости (если a, то b) (достаточно через b и какую-нибудь точку прямой a провести плоскость). Получаем из: “если Q3, то ” и “Р” по правилу отрицания : .

Итак, получаем и, т. е. Q2 и Q3 – неверно, поэтому верно Q1: a||b.

2)Метод математической индукции – специальный метод доказательства, применяемый к предложениям типа: “xN P(x)”, т.е. к предложениям, выражающим некоторое свойство, присущее любому натуральному числу.

Схематически полная логическое доказательство теоремы можно составить так: 1) точное понятие; 2) включаем все посылки; 3) не опускают никаких промежуточных рассуждений; 4) явно указывающее правила вывода.

В практике школьного обучения математики наиболее часто используется прямое доказательство, основанное на содержательном доказательстве в свернутом виде: 1) интуитивное понятие; 2) опускают некоторые в частности, общие посылки; 3) опускают отдельные шаги; 4) не фиксируют использование логики.

Например: Диагонали прямоугольника равны.

Теорему можно доказать: а) с помощью осевой симметрии; б) с помощью равенства прямоугольников. Отметим, что различные доказательства теоремы отличаются как математическими посылками, (используемыми в них истинными предложениями данной теории), так и логикой (используемыми правилами).

Доказательство 1.

“Если четырёхугольник – прямоугольник, то его диагонали равны” или “Если ABCD – прямоугольник, то AC=BD”.

Точка D симметрична A; B – симметрична C относительно MN (это непосредственно следует из ранее доказанной теоремы: “Серединный перпендикуляр и сторона прямоугольника являются осью симметрии). Значит, отрезок AC и DB симметричны относительно оси MN. Поэтому AC=BD.

Доказательство 2.

, т.к. они прямоугольные ( ), AB=CD как противоположные стороны прямоугольника; AD – общая сторона. Следовательно, AB=CD.

Методика введения теорем предполагает подготовку учащихся к восприятию ее доказательства.

1) Для того, чтобы учащиеся поняли логические части доказательства, применяют метод целесообразных задач.

Например: При доказательстве того факта, что угол между боковым ребром призмы и ее высотой равен углу между плоскостями основания и перпендикулярного сечения, необходимого предварительно решить по готовым чертежам следующие задачи:


1. По данным на рисунке найти и угол между прямыми BO и OC.

Замечание: угол между двумя прямыми (двумя плоскостями) острый.


2. Угол между плоскостями и равен , прямая OA перпендикулярна плоскости , ; прямая OB перпендикулярна плоскости , . Найти угол между прямыми OA и OB.

2) Для подготовки учащихся к восприятию доказательства теоремы можно использовать прием многократного доказательства (например, тройная прокрутка).

а) учитель излагает схему (идею, канву) доказательства. Возможно, при этом использование эвристической беседы, которая может быть или анаError: Reference source not foundлитико-синтетический или синтетический. Вопросы должны быть сформулированы четко, отражая наиболее важные логические этапы доказательства. После каждого вопроса необходима пауза для того, чтобы учащиеся смогли самостоятельно найти ответ:

б) учитель излагает доказательство теоремы в виде краткого рассказа, обосновывая каждый шаг;

в) повторение доказательства в полном объеме.

Еще один прием обучения доказательством – обучение учащихся составленного плана доказательства теоремы, при котором выполняются следующие этапы:

  • даётся готовый план доказательства новой теоремы и учащимся предлагается самим доказать ее с помощью плана. Преимущества: 1) план разбивает доказательство теоремы на ряд простых, элементарных задач, которые учащиеся могут решить; 2) у учащихся появляется уверенность в том, что они смогут доказать новую теорему; 3) план позволяет охватить все доказательство в целом, у учащихся возникает чувство полного понимания;

  • учащихся учат составлять план уже изученной теоремы. Сначала эта работа выполняется коллективно, а затем самостоятельно.


Заключение

Раскрыть логическую структуру составного предложения, – значит, показать, из каких элементарных предложений сконструировано данное составное предложение и как оно составлено из них, т.е. с помощью каких и в каком порядке применяемых логических связок “не”, “и”, “или”, “если…,то…”, “тогда, и только тогда”, “для всякого”, “существует”, обозначающих логические операции, с помощью которых из одних предложений образуются другие.


Литература

1. К.О. Ананченко «Общая методика преподавания математики в школе», Мн., «Унiверсiтэцкае»,1997г.

2. Н.М. Рогановский «Методика преподавания в средней школе», Мн., «Высшая школа», 1990г.

3. Г. Фройденталь «Математика как педагогическая задача»,М., «Просвещение», 1998г.

4. Н.Н. «Математическая лаборатория», М., «Просвещение», 1997г.

5. Ю.М. Колягин «Методика преподавания математики в средней школе», М., «Просвещение», 1999г.

6. А.А. Столяр «Логические проблемы преподавания математики», Мн., «Высшая школа», 2000г.

Характеристики

Тип файла
Документ
Размер
680,12 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее