VDV-1560 (710634), страница 5
Текст из файла (страница 5)
“1.Надо создать потребность в самоконтроле. Учащиеся должны чаще встречаться с реальными условиями, ставящими их перед необходимостью самостоятельно контролировать правильность полученного ответа.
2.Изредка целесообразно предлагать учащимся такие задания, неправильность полученного ответа которых выяснится только в результате проверки.
3.Надо сообщать учащимся способ проверки решенной задачи, уравнения, неравенства, тождественного преобразования. Разъяснять, что проверять надо не только окончательный ответ, но и промежуточные результаты.
4.Во время анализа письменных контрольных и самостоятельных работ иногда полезно сначала рассмотреть не только наиболее часто встречающиеся неправильные решения, но и, путем проверки, доказать учащимся их неправильность, и лишь после этого рассмотреть правильное решение.
5.Иногда учитель преднамеренно допускает ошибки на доске.
6.В тех темах, в которых это возможно, желательно проводить наблюдения и практические работы по математике. Самоконтроль при выполнении лабораторных работ осуществляется обычно повторным измерением и вычислениями (при возможности- другим способом), иногда и непосредственным измерением искомой величины.
7.Полезно иногда учащимся предлагать самим оценить свою работу (контрольную или самостоятельную). Это повышает ответственность ученика за ее выполнение и способствует воспитания умения и привычки самоконтроля.
8.Полезно иногда предлагать учащимся проверить и оценить работу товарища.”( 23,С.55-60)
Степень или мера обобщения действительности является одним из важнейших параметров самоконтроля, отработка которого необходима для получение полноценного умственного действия. Поэтому обучение самоконтролю следует начинать еще в дочисловой период, используя следующие задания:
-
Проверь, правильно ли срисован узор (правильно ли срисовано положение фигур на шахматной доске).
-
Найди такую же картинку.
-
Что неправильно нарисовано на картинке?
Позднее можно включать в работу задания с цифрами и буквами:
-
Проверь, одинаковые ли цифры вычеркнуты на карточке и на образце.
-
Найди цифру (букву) среди многих, изображенных в беспорядке.
Далее при обучении математике возможно использовать разнообразные приемы формирования самоконтроля, которые можно классифицировать следующим образом:
“-сверка с образцом;
-повторное решение задачи;
-решение обратной задачи;
-проверка полученных результатов по условию задачи;
-решение задачи различными способами;
-моделирование;
-примерная оценка искомых результатов (прикидка);
-проверка на частном случае;
-испытание получаемых результатов по косвенным параметрам.”(15,С.6)
Следует отметить, что под словом “задача” здесь подразумеваются не только текстовые задачи, но и другие виды математических заданий.
Эта классификация приемов самоконтроля составлена С.Г. Манвеловым. Мы рассмотрим подробнее некоторые из них.
Ключевым звеном в проведении контроля над действиями является сверка с образцом. Образец действия должен быть хорошо усвоен, прежде чем он может быть использован в самоконтроле за действиями, которые должны соответствовать именно этому образцу. Т.е., чтобы сформировать самоконтроль у школьников, надо сначала обеспечить усвоение образца действия, это значит, надо создать у учащихся опыт, соответствующий нужному “акцептору действия”. Более того, процесс развития самоконтроля школьников базируется на переходе от готовых образцов к составным и их сочетаниям при постепенном проведении контролируемого действия. Кроме того, чтобы дети научились контролю, необходимо, чтобы действие с его операторно- предметным составом было представлено достаточно развернуто, а его состав разработан совместно учителем и учеником. В этом случае образцы действий предстанут перед учащимися не как заданные извне, а следовательно случайные, а как необходимые и обязательные.
Г.С.Никифоров считает (мы соглашаемся с ним), что “наличие только одного образца, т.е. обеспечение эталонной составляющей в механизме самоконтроля, еще недостаточно для реализации последнего. Нужно побуждение к осуществлению самоконтроля. Но поскольку младшие школьники еще плохо осознают роль самоконтроля в решении поставленных перед ними задач, то необходим систематический и последовательный контроль за учащимися со стороны учителей, родителей, всего классного коллектива. Контроль извне является тем обязательным условием, соблюдение которого создает необходимую основу для формирования самоконтроля.”(17,С.93) Таким образом, самоконтроль учащихся не отменяет контроля учителя и не снижает его роли, с только предваряет, и тем самым усиливает его. Учитель должен систематически изучать и анализировать ошибки учащихся, обращать внимание на внутреннее содержание, а не на внешнюю, формальную их сторону, должен выявлять причины их появления и принимать меры к предупреждению ошибок. Конечно это предупреждение должно быть тактичным и не навязчивым.
Приучать учащихся к самопроверке следует уже на занятиях по арифметике, где это особенно просто, и продолжать в течение изучения всего курса математики. С первого класса необходимо нацеливать детей на то, что контролировать себя нужно сразу же, как только решили самостоятельно хотя бы один пример. Этим реализуется принцип немедленной проверки решения (решил пример- проверь себя; убедился, что твое решение верное- приступай к решению следующего примера). Такое положение в классе создается при определенных условиях. В качестве внешних условий вначале выступают материализованные индивидуальные средства обучения и использование их при самоконтроле на этапе объяснения и первичного закрепления нового учебного материала. Обучая элементам самоконтроля на этом этапе, главное выработать у детей потребность контролировать правильность полученных результатов. Этап самоконтроля с конкретными предметами должен перейти в этап самоконтроля заменителями предметов в виде рисунков, схем, чертежей и т.д. Здесь методические усилия учителю целесообразно направить, главным образом, на понимание детьми соответствия между математическими записями, образцами математических выражений и их иллюстрациями в учебниках, тетрадях на печатной основе, дидактических материалах. Эти виды работ целесообразно применять на начальной стадии формирования вычислительных приемов с постепенным уменьшением вспомогательных наглядных элементов в обучении, переходя к обучению самоконтролю, в основе которого лежат закономерности, свойства арифметических действий, взаимосвязь между компонентами, состав чисел.
Мы видим, что практически с самого начала обучения в школе, воспитание у учащихся навыка самоконтроля в математике осуществляется в первую очередь при решении математических задач (в широком смысле этого слова), хотя в школе решение математических упражнений учащиеся заканчивают большей частью получением лишь ответа, в лучшем случае они сверяют результат вычислений с ответом учебника (если ответ дается), но проверка решения по условию не производится. В связи с этим, для формирования самоконтроля следует использовать не только такой прием, как сверка с образцом, но и некоторые другие приемы.
Одним из средств обучения самоконтролю являются указания учителя о порядке его проведения при выполнении задания, которые даются в процессе инструктирования учащихся. Рекомендуется даже использовать карточки с порядком проведения самоконтроля, выполнения проверки. В указаниях должны содержаться разъяснения о том, когда и какими способами учащимся следует контролировать свои действия и их результат. Это значит, что в первую очередь учащиеся должны знать способы проверки выполнения арифметических действий, тождественных преобразований, решения уравнений и неравенств и применять их на практике.
Считаем нужным указать, что проверка результатов арифметических вычислений производится повторным вычислением (по возможности другим способом), обратным действием, а также приближенной прикидкой возможного ответа. Правильность выполнения тождественных преобразований выражений, содержащих переменные, обычно проверяется обратным действием или путем подстановки некоторых числовых значений вместо буквенных в левую и правую части полученного равенства. Но следует учитывать, что проверка тождественных преобразований путем подстановки числовых значений переменной в обе части полученного равенства может и не вскрыть ошибку в ответе. Это отрицательная сторона такого способа проверки. Проверка же обратным действием является совершенно надежной, конечно, если это действие выполнено учеником безошибочно. Проверка ответа при решении неравенства обязательно должна состоять их двух этапов:
-
проверить правильность определения граничного значения переменной;
-
убедиться в том, что произвольное значение переменной, взятое из соответствующего подмножества, действительно удовлетворяет данному неравенству.
Игнорирование любого из этих этапов может привести к неправильному заключению.
Во-вторых, учащиеся должны знать способы проверки решений текстовых задач и применять их для доказательства правильности ответа. Это тоже очень важно при формировании навыка самоконтроля, т.к. текстовые задачи составляют большую часть всего материала, изучаемого в курсе математики.
В.И.Кузнецов считает, что в качестве эффективного средства формирования самоконтроля могут выступать обратные задачи:” Убедившись в правильности решения задачи, учитель обращается к классу с предложением: “Будем считать эту задачу прямой. Давайте теперь составим обратную к ней задачу. Сколько можно составить обратных задач?” Столько, сколько данных содержится в прямой задаче”.( 13,С.37)
Такой методический подход представляется весьма важным для того, чтобы приучить детей к самостоятельному составлению и решению обратных задач, что в последствии перейдет в потребность и необходимость контролировать решение прямой задачи при выполнении самостоятельных, домашних и контрольных работ. В подобных заданиях правильность решения прямой задачи проверяется решением обратной задачи, что позволяет быстрее обнаружить ошибки, выявить их причины, и на основе этого анализа внести соответствующие коррективы. Взаимообратные задачи (как и взаимообратные действия) обеспечивают взаимное подкрепление и постоянную обратную связь.
Приведем пример взаимообратных задач:
“В понедельник в магазине продали 278 пар обуви, во вторник- в 2 раза меньше, а в среду- на 44 пары больше, чем в понедельник. Сколько пар обуви продали за эти дни?”
После решения задачи получается ответ: 739 пар обуви продали всего.
К этой задаче можно составить 3 обратные задачи.
-
В понедельник в магазине продали 278 пар обуви, а в среду продали 322 пары обуви. На сколько пар обуви в среду продали больше, чем в понедельник?
-
В понедельник в магазине продали 278 пар обуви, во вторник продали 139 пар. Во сколько раз больше обуви продали в понедельник, чем во вторник?
-
В магазине продали 739 пар обуви за 3 дня. Во вторник продали 139 пар обуви, а в среду 322 пары. Сколько пар обуви продали в понедельник?
Следующим приемом проверки решения текстовых задач является проверка по условию и смыслу задачи. “После решения задачи снова возвращаемся к ее условию. Прочитав сначала задачу полностью, разбиваем условие на отдельные смысловые части. В каждой части определяем, то ли число получается, если учесть найденный ответ.”( 9,С.13)
Для примера рассмотрим ту же задачу. После прочтения всего условия целиком, читаем: “В понедельник в магазине продали 278 пар обуви, во вторник- в 2 раза меньше...”
Проверяем: 278 : 139 = 2(раза)- верно.
“...а в среду- на 44 пары больше, чем в понедельник...”
Проверяем: 322 - 278 = 44(пары)- верно.
“Сколько пар обуви продали за эти дни?”
Проверяем: “У нас получилось 739 пар, тогда 739-322-139 =278(пар)- продали в понедельник” - верно.
Таким образом, ответ не противоречит ни одному из положений условия задачи, значит задача решена правильно.
Кроме того, для проверки правильности решения текстовых задач (и не только текстовых задач) можно использовать решение разными способами, т.к. в громадном большинстве случаев математические упражнения решаются несколькими способами. Обычно сравнивают, какой из способов лучше, но необходимо подчеркнуть, что решение задачи новым способом одновременно означает проверку ответа, полученного первым способом.
Итак, одним из условий формирования навыка самоконтроля является умение детей проверять правильность решения текстовых задач. Проверка обычно осуществляется одним из следующих способов:
-
проверка ответа по условию и смыслу задачи;
-
составление и решение обратных задач;
-
решение задач другими способами.
В-третьих, для формирования навыка самоконтроля полезно приучить детей проверять справедливость выведенных формул на конкретных примерах.
Следует заметить, что для формирования навыка самоконтроля не обязательно всегда проводить вычисления, иногда можно ограничиться составлением плана проверки, установлением последовательности действий. Проверку также можно проводить устно. Но это возможно только тогда, когда у учащихся уже выработался навык проведения контрольных действий над тем или видом математических упражнений.
Рассмотрим еще несколько приемов формирования навыка самоконтроля. Выработке навыка самоконтроля помогает прием приближенной оценки ожидаемого результата. Установление возможных пределов ожидаемого ответа предупреждает недочеты типа описок, пропуска цифр и т.д.
Очень важным приемом обучения младшего школьника самоконтролю является применение коллективных проверок в сочетании с контролем педагога, т.к. в первую очередь школьника нужно научить находить ошибки у другого человека (контроль). Со временем ученик начнет переносить полученные умения на собственную деятельность (самоконтроль). Таким образом, формирование контроля идет от контроля за действиями других к самоконтролю. Наиболее естественная ситуация возникает тогда, когда весь класс слушает ответ ученика у доски. Под руководством учителя проводится разбор ответа или выполненного на доске упражнения, устанавливаются допущенные ошибки и проводится коллективное их исправление. В.И.Рыжик рекомендует организовать работу следующим образом:” На первых порах классу по окончании ответа можно задать следующие вопросы:” Верен ли окончательный ответ? Верна ли идея решения? Верен ли ход решения?” В дальнейшем задача усложняется. После того, как ученик закончит отвечать, учащиеся с места задают ему вопросы, чтобы уяснить отдельные моменты решения, затем делают замечания по существу его ответа, предлагают другие варианты решения задачи и высказывают общие соображения по поводу услышанного.”(19,С.26) Когда школьники привыкают к этой форме работы, то учитель еще усложняет задание. Кто-то из учеников оценивает ответ полностью, т.е. высказывает свое мнение по поводу ответа или выполненного задания. Если учащиеся выполняют то же задание у себя в тетрадях, то, после устного разбора, каждый сличает свою работу с образцом.
Фронтальные и взаимные проверки представляют собой промежуточное звено между контролем педагога и самоконтролем учащихся. Применение их имеет ряд преимуществ при обучении самоконтролю: положение контролеров обязывает учащихся лучше готовиться к занятиям, чтобы иметь возможность указать товарищу на допущенные им ошибки и установить их причины; коллективный анализ образца позволяет более полно выявить его сигнальные признаки и более углубленно их усвоить; разбирая разные способы сличения с образцом выполняемой работы, учащиеся отбирают те из них, которые наиболее целесообразны в данных условиях. Благодаря этому достигается большая точность сличения; коллективный анализ позволяет более полно выявить допущенные ошибки и установить их причины; в ходе коллективного поиска выявляются наиболее целесообразные способы исправления ошибок и внесения усовершенствований в выполняемую работу. Благодаря применению коллективных форм контроля учащиеся быстрее и лучше овладевают всеми звеньями индивидуального самоконтроля.
Еще одним продуктивным приемом формирования самоконтроля являются математические диктанты, проводимые по определенной методике. При составлении диктантов целесообразно использовать 5 заданий- это дает возможность самостоятельной оценки диктантов детьми: оценка за работу равна числу верно выполненных заданий. В книге “Самостоятельная работа учащихся в процессе обучения математике” описана методика проведения такого математического диктанта. Для работы детям рекомендуется выдавать двойные листки с копиркой между ними. “Как только диктант заканчивается, дети по команде учителя вынимают копирку, после чего они лишаются возможности делать новые пометки, связанные с решением заданий, т.к. в зачет идут только записи, имеющиеся на обоих листах, а второй лист является копией первого.”(20,С.14)















