diplom (710348), страница 5

Файл №710348 diplom (Развитие наглядно-действенного и наглядно-образного мышления младших школьников) 5 страницаdiplom (710348) страница 52016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

Углы.

Угол – это геометрическая фигура, которая состоит из точки и двух лучей, исходящих из этой точки. Лучи называются сторонами угла, а их общее начало – его вершиной.

Угол называется развернутым, если его стороны лежат на одной прямой.

Угол, составляющий половину развернутого угла, называется прямым. Угол, меньший прямого, называется острым. Угол, больший прямого, но меньший развернутого, называется тупым.

Кроме понятия угла, данного выше, в геометрии рассматривают понятие плоского угла.

Плоский угол – это часть плоскости, ограничения двумя различными лучами, исходящими из одной точки.

Существует два плоских угла, образованные двумя лучами с общим началом. Они называются дополнительными. На рисунке изображены два плоских угла со сторонами ОА и ОВ, один из них заштрихован.

Углы бывают смежные и вертикальные.

Два угла называются смежными, если у них одна сторона общая, а другие стороны этих углов являются дополнительными полупрямыми.

Сумма смежных углов равна 180 градусов.

Два угла называются вертикальными, если стороны одного угла являются дополнительными полупрямыми сторон другого.

Углы АОД и СОВ, а также углы АОС и ДОВ – вертикальные.

Вертикальные углы равны.

Параллельные и перпендикулярные прямые.

Две прямые на плоскости называются параллельными, если они не пересекаются.

Если прямая а параллельна прямой в, то пишут а II в .

Две прямые называются перпендикулярными, если они пересекаются под прямым углом.

Если прямая а перпендикулярна прямой в, то пишут а в.

Треугольники.

Треугольников называется геометрическая фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех попарно соединяющих их отрезков.

Любой треугольник разделяет плоскость на две части: внутреннюю и внешнюю.

В любом треугольнике выделяют следующие элементы: стороны, углы, высоты, биссектрисы, медианы, средние линии.

Высотой треугольника, опущенной из данной вершины, называются перпендикуляр, проведенный из этой вершины к прямой, содержащей противоположную сторону.

Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противоположной стороне.

Медианой треугольника, проведенной из данной вершины, называется отрезок, соединяющий эту вершину с серединой противолежащей стороны.

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

Четырехугольники.

Четырехугольником называется фигура, которая состоит из четырех точек и четырех последовательно соединяющих их отрезков, причем никакие три из данных точек не должны лежать на одной прямой, а соединяющие их отрезки не должны пересекаться. Данные точки называются вершинами треугольника, а соединяющие из отрезки – его сторонами.

Стороны четырехугольника, исходящие из одной вершины, называются противолежащими.

У четырехугольника АВСД вершины А и В – соседние, а вершины А и С – противолежащие; стороны АВ и ВС – соседние, ВС и АД – противолежащие; отрезки АС и ВД – диагонали данного четырехугольника.

Четырехугольники бывают выпуклые и невыпуклые. Так, четырехугольник АВСД – выпуклый, а четырехугольник КРМТ – невыпуклый.

Среди выпуклых четырехугольников выделяют параллелограммы и трапеции.

Параллелограммом называется четырехугольник, у которого противолежащие стороны параллельны.

Трапецией называется четырехугольник, у которого только две противоположные стороны параллельны. Эти параллельные стороны называются основаниями трапеции. Две другие стороны называются боковыми. Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции.

ВС и АД – основания трапеции; АВ и СД – боковые стороны; КМ – средняя линия трапеции.

Из множества параллелограммов выделяют прямоугольники и ромбы.

Прямоугольником называется параллелограмм, у которого все углы прямые.

Ромбом называется параллелограмм, у которого все стороны равны.

Из множества прямоугольников выделяют квадраты.

Квадратом называется прямоугольник, у которого все стороны равны.

Окружность.

Окружностью называется фигура, которая состоит из всех точек плоскости, равноудаленных от данной точки, которая называется центром.

Расстояние от точек до ее центра называется радиусом. Отрезок, соединяющий две точки окружности, называется хордой. Хорда, проходящая через центр, называется диаметром. ОА – радиус, СД – хорда, АВ – диаметр.

Центральным углом в окружности называется плоский угол с вершиной в ее центре. Часть окружности, расположенная внутри плоского угла, называется дугой окружности, соответствующей этому центральному углу.

По новым учебникам в новых программах М.И. Моро, М.А. Бантовой, Г.В. Бельтюковой, С.И. Волковой, С.В. Степановой в 4 классе даются задачи на построение, такие, которых раньше в программе по математике в начальной школе не было. Это такие задачи, как:

  • построить перпендикуляр к прямой;

  • разделить отрезок пополам;

  • построить треугольник по трем сторонам;

  • построить правильный треугольник, равнобедренный треугольник;

  • построить шестиугольник;

  • построить квадрат, пользуясь свойствами диагоналей квадрата;

  • построить прямоугольник, пользуясь свойством диагоналей прямоугольника.

Рассмотрим построение геометрических фигур на плоскости.

Раздел геометрии, изучающий геометрические построения, называется конструктивной геометрией. Основным понятием конструктивной геометрии является понятие "построить фигуру". Основные предложения формируются в виде аксиом и сводятся к следующим.

  1. Каждая данная фигура построена.

  2. Если построены две (или более) фигуры, то построено и объединение этих фигур.

  3. Если построены две фигуры, то можно установить, будет ли их пересечение пустым множеством или нет.

  4. Если пересечение двух построенных фигур не пусто, то оно построено.

  5. Если построены две фигуры, то можно установить, будет ли их разность пустым множеством или нет.

  6. Если разность двух построенных фигур не является пустым множеством, то она построена.

  7. Можно простроить точку, принадлежащую простроенной фигуре.

  8. Можно построить точку, не принадлежащей построенной фигуре.

Для построения геометрических фигур, обладающих некоторыми указанными свойствами, пользуются различными чертежными инструментами. Простейшими из них являются: односторонняя линейка ( в дальнейшем просто линейка), двусторонняя линейка, угольник, циркуль и др.

Различные чертежные инструменты позволяют выполнять различные построения. Свойства чертежных инструментов, используемые для геометрических построений, также выражаются в форме аксиом.

Поскольку в школьном курсе геометрии рассматриваются построения геометрических фигур с помощью циркуля и линейки, мы также остановимся на рассмотрении основных построений, выполняемых именно этими чертежами инструментами.

Итак, с помощью линейки можно выполнить следующие геометрические построения.

  1. построить отрезок, соединяющий две построенные точки;

  2. построить прямую, проходящую через две построенные точки;

  3. построить луч, исходящий из построенной точки и проходящий через построенную точку.

Циркуль позволяет выполнить следующие геометрические построения:

  1. построить окружность, если построен ее центр и отрезок, равный радиусу окружности;

  2. построить любую из двух дополнительных дуг окружность, если построены центр окружности и концы этих дуг.

Элементарные задачи на построение.

Задачи на построение – это, пожалуй, самые древние математические задачи, они помогают лучше понять свойства геометрических фигур, способствуют развитию графических умений.

Задача на построение считается решенной, если указан способ построения фигуры и доказано, что в результате выполнения указанных построений действительно получается фигура с требуемыми свойствами.

Рассмотрим некоторые элементарные задачи на построение.

  1. Построить на данной прямой отрезок СД, равный данному отрезку АВ.

Возможность только построения вытекает из аксиомы откладывания отрезка. С помощью циркуля и линейки оно осуществляется следующим образом. Пусть даны прямая а и отрезок АВ. Отмечаем на прямой точку С и строим с центром в точке С окружность с прямой а обозначаем Д. Получаем отрезок СД, равный АВ.

  1. Через данную точку провести прямую, перпендикулярную данной прямой.

Пусть даны точки О и прямая а. Возможны два случая:

  1. Точка О лежит на прямой а;

  2. Точка О не лежит на прямой а.

В первом случае из обозначим точку С, не лежащую на прямой а. Из точки С как из центра списываем окружность произвольного радиуса. Пусть А и В – точки ее пересечения. Из точек А и В описываем окружность одного радиуса. Пусть точка О – точка их пересечения, отличная от С. Тогда полупрямая СО – это биссектриса развернутого угла, а также и перпендикуляр к прямой а.

Во втором случае из точки О как из центра проводим окружность, пересекающую прямую а, а затем из точек А и В тем же, радиусом проводим еще две окружности. Пусть О – точка их пересечения, лежащая в полуплоскости, отличной от той, в которой лежит точка О. Прямая ОО/ и есть перпендикуляр к данной прямой а. Докажем это.

Обозначим через С точку пересечения прямых АВ и ОО/. Треугольники АОВ и АО/В равны по трем сторонам. Поэтому угол ОАС равен углу О/АС равны по двум сторонам и углу между ними. Отсюда из углы АСО и АСО/ равны. А так как углы смежные, то они прямые. Таким образом, ОС есть перпендикуляр к прямой а.

  1. Через данную точку провести прямую, параллельную данной.

Пусть даны прямая а и точка А вне этой прямой. Возьмем на прямой а какую-нибудь точку В и соединим ее с точкой А. Через точку А проведем прямую С, образующую с АВ такой же угол, какой АВ образует с данной прямой а, но на противоположной стороне от АВ. Построенная прямая будет параллельна прямой а., что следует из равенства накрест лежащих углов, образованных при пересечении прямых а и с секущей АВ.

  1. Построить касательную к окружности, проходящую через данную на ней точку.

Дано: 1) окружность Х (О, ч)

2) точка А х

Построить: касательную АВ.

Построение.

  1. прямая АО (аксиома 2 линейки)

  2. окружность Х (А, ч), где ч – произвольный радиус (аксиома 1 циркуля)

  3. точки М и N пересечения окружности х1, и прямой АО, то есть {М, N} = х1 АО (аксиома 4 общая)

  4. окружность х (М, r2), где r2 – произвольный радиус, такой что r2 r1 (аксиома 1 циркуля)

  5. окружность х (N r2) (аксиома 1 циркуля)

  6. Точки В и С пересечения окружностей х2 и х3 , то есть { В,С} = х2 х3 (аксиома 4 общая).

  7. ВС – искомая касательная (аксиома 2 линейки).

Доказательство: По построению имеем: МВ = МС = NВ = NC = r2. Значит фигура МВNC – ромб. точка касания А является точкой пересечения диагоналей: А = MN BC, BAM = 90 градусов.

Рассмотрев материал данного параграфа, вспомнили основные понятия планиметрии: отрезок, луч, угол, треугольник, четырехугольник, окружность. Рассмотрели основные свойства этих понятий. А так же выяснили, что построение геометрических фигур с заданными свойствами при помощи циркуля и линейки осуществляется по определенным правилам. Прежде всего надо знать, какие построения можно выполнить с помощью линейки, не имеющей делений и с помощью циркуля. Эти построения называются основными. Кроме того, надо уметь решать элементарные задачи на построение, т.е. уметь строить: отрезок, равный данному: прямую, перпендикулярную данной прямой, и проходящую через данную точку; прямую, параллельную данной, и проходящую через данную точку, касательную к окружности.

Уже в начальной школе дети начинают знакомиться с элементарными геометрическими понятиями, геометрический материал занимает значительное место в традиционных и альтернативных программах. Это связано со следующими причинами:

1. Он позволяет активно использовать наглядно-действенный и наглядно-образный уровень мышления, которые являются наиболее близкими детям младшего школьного возраста, и опираясь на которые, дети выходят на словесно-образный и словесно-логический уровни.

Характеристики

Тип файла
Документ
Размер
282 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее