111690 (710344), страница 2
Текст из файла (страница 2)
1.3. Приёмы развития логического мышления младших школьников.
В начальной школе большое место должно быть отведено обучению операциям логического мышления: анализу, синтезу, сравнению, классификации, обобщению. Рассмотрим упражнения в учебнике М. И. Моро, направленные на формирование этих операций.
Задания, направленные на развитие анализа и синтеза:
1. Соединение элементов в единое целое:
Вырежи из Приложения нужные фигуры и составь из них домик, кораблик, рыбку.
[19, 61]
2. Поиск различных признаков предмета:
Сколько углов, сторон и вершин у пятиугольника?
[19, 46]
3. Узнавание или составление объекта по заданным признакам:
-
Какое число идёт при счёте перед числом 6? Какое число следует за числом 6? За числом 7?
[19, 54]
-
Составь по краткой записи задачу и реши её.
Было – 18 кг
Продали - ?
Осталось – 8 кг
[15, 35]
-
Рассмотрение данного объекта с точки зрения различных
понятий.
Составь по рисунку разные задачи и реши их.
[20, 16]
-
Постановка различных заданий к данному математическому
объекту.
-
К концу учебного года у Лиды осталось 2 чистых листа в тетради по русскому языку и 5 чистых листов в тетради по математике. Поставь к этому условию сначала такой вопрос, чтобы задача решалась сложением, а потом такой вопрос, чтобы задача решалась вычитанием.
[20, 91]
-
В коробке было 10 карандашей. Когда из коробки взяли несколько карандашей, в ней осталось 6 карандашей. Сколько карандашей взяли? Рассмотри краткую запись и схематический чертёж к задаче. Объясни, как этот схематический чертёж составлен. Реши задачу.
Б
ыло – 10 к. 6 к. ?
В
зяли - ?
Осталось – 6 к. 10 к.
[15, 25]
Задания, направленные на формирование умения классифицировать:
-
В мультфильме про динозавров 9 серий. Коля уже посмотрел 2 серии. Сколько серий ему осталось посмотреть?
Составь две задачи, обратные данной.
Подбери к каждой задаче схематический чертёж.
[15, 45]
Задания, направленные на развитие умения сравнивать.
-
Выделение признаков или свойств одного объекта.
У Тани было несколько значков. Она подарила 2 значка подруге, и у неё осталось 5 значков. Сколько значков было у Тани? Какой схематический чертёж подходит к этой задаче?
2 зн. 5 зн. 2 зн. ?
? 7 зн.
[15, 25]
-
Установление сходства и различия между признаками предметов.
Составь задачу по краткой записи и реши её.
Купили – 20 шт. Купили - ?
Израсходовали – 9 шт. Израсходовали – 9 шт.
Осталось - ? Осталось – 11 шт.
Чем похожи и чем отличаются эти задачи?
[15, 71]
Задания, направленные на развитие умения обобщать.
Задания данного вида направлены на умение выделять существенные свойства предметов.
1) Найди среди следующих записей уравнения, выпиши их и реши.
30 + х > 40 45 – 5 =40 60 + х = 90
80 – х 38 – 8 < 50 х – 8 = 10
[15, 70]
-
Как можно одним словом назвать все эти фигуры?
[19, 69]
Все предложенные задания, безусловно, направлены на формирование нескольких операций мышления, но ввиду преобладания какого-либо из них упражнения были разбиты на предложенные группы. Но существуют и упражнения с ярко выраженной комплексной направленностью. Рассмотрим их далее.
-
Логические задачи.
Вася выше Саши на 8 см, а Коля ниже Саши на 3 см. На сколько сантиметров самый высокий из мальчиков выше самого маленького?
[15, 52]
2) «Магические квадраты».
-
расставьте числа 2; 4; 5; 9; 11; 15 так, чтобы по всем линиям в
сумме получилось 24.
[15, 55]
-
Сравни уравнения в каждом столбике и, не вычисляя, скажи, в котором из них неизвестное число больше. Проверь вычислением:
х + 37 = 78 90 – х = 47 х – 28 = 32 45 + х = 63
х + 37 = 80 90 – х = 50 х – 28 = 22 45 + х = 68
[17, 26]
Проанализировав данные упражнения, взятые из учебника Моро М. И., можно сделать следующие выводы. В данном учебнике, несомненно, присутствуют разнообразные задания, способствующие развитию операций логического мышления, но заданий на построение вспомогательных моделей к текстовым задачам мало. Часто в этих заданиях не используется весь потенциал средств для развития логического мышления. Например, детям предлагается сравнить уже готовые модели к данной задаче, хотя дети могут построить модели сами, а потом их сравнить. Также в учебнике М. И. Моро преобладают модели в виде краткой записи и рисунка задачи, меньше моделей в виде чертежа и соответственно мало заданий на их сравнение. Задания на развитие умения обобщать в процессе построения моделей задач отсутствуют, комплексных заданий на развитие нескольких операций мышления и заданий на развитие умения сравнивать мало.
Исходя из вышеизложенного, можно предложить дополнить данный список заданий упражнениями, способствующими развитию логического мышления младших школьников в процессе построения вспомогательных моделей к текстовым задачам. Для этого необходимо в первую очередь изучить понятие текстовой задачи и рассмотреть виды вспомогательных моделей текстовых задач.
Глава 2. Обучение построению вспомогательных моделей в процессе решения текстовых задач.
2. 1. Использование вспомогательных моделей в процессе решения текстовых задач.
Решение любой задачи – процесс сложной умственной деятельности. Реальные объекты и процессы в задаче бывают столь многогранны и сложны, что лучшим способом их изучения часто является построение и исследование модели как мощного орудия познания.
Текстовая задача – это словесная модель некоторого явления (ситуации, процесса). Чтобы решить такую задачу, надо перевести её на язык математических действий, то есть построить её математическую модель. [24, 118]
Математическая модель – это описание какого–либо реального процесса на математическом языке. [24, 118]
В процессе решения задачи чётко выделяются три этапа математического моделирования:
1 этап – это перевод условий задачи на математический язык; при этом выделяются необходимые для решения данные и искомые и математическими способами описываются связи между ними;
2 этап – внутримодельное решение (то есть нахождение значения выражения, выполнение действий, решение уравнения);
3 этап – интерпретация, то есть перевод полученного решения на тот язык, на котором была сформулирована исходная задача.
Наибольшую сложность в процессе решения текстовой задачи представляет перевод текста с естественного языка на математический, то есть 1 этап математического моделирования. Чтобы облегчить эту процедуру, строят вспомогательные модели – схемы, таблицы и другие. Тогда процесс решения задачи можно рассматривать как переход от одной модели к другой: от словесной модели реальной ситуации, представленной в задаче, к вспомогательной (схемы, таблицы, рисунки и так далее); от неё – к математической, на которой и происходит решение задачи.
Приём моделирования заключается в том, что для исследования какого-либо объекта (в нашем случае текстовой задачи) выбирают (или строят) другой объект, в каком-то отношении подобный тому, который исследуют. Построенный новый объект изучают, с его помощью решают исследовательские задачи, а затем результат переносят на первоначальный объект.
Модели бывают разные, и поскольку в литературе нет единообразия в их названиях. Уточним терминологию, которую будем использовать в дальнейшем.
Все модели можно разделить на схематизированные и знаковые по видам средств, используемых для их построения.
Схематизированные модели, в свою очередь, делятся на вещественные и графические в зависимости от того, какое действие они обеспечивают. Вещественные (или предметные) модели текстовых задач обеспечивают физическое действие с предметами. Они могут строиться из каких-либо предметов (пуговиц, спичек, бумажных полосок и так далее), они могут быть представлены разного рола инсценировками сюжета задач. К этому виду моделей причисляют и мысленное воссоздание реальной ситуации, описанной в задаче, в виде представлений.
Графические модели используются, как правило, для обобщенного схематического воссоздания ситуации задачи. К графическим следует отнести следующие виды моделей:
-
рисунок;
-
условный рисунок;
-
чертёж;
-
схематичный чертёж (или просто схема).
Разъясним суть этих моделей на примере задачи: «Даша нарисовала 4 круга, а Паша на 3 круга больше. Сколько кругов нарисовал Паша?»
Рисунок в качестве графической модели этой задачи имеет вид:
Д.
П
.
?
Условный рисунок может быть и таким:
Д
.
В
.
?
Чертёж как графическая модель выполняется при помощи чертёжных инструментов с соблюдением заданных отношений:
1к.
Д
.
П
.
Схематический чертёж (схема) может выполняться от руки, на нём указываются все данные и искомые:
4к.
Д
.













