kontrol (710018), страница 6

Файл №710018 kontrol (Контроль знаний и умений учащихся по математике в школе) 6 страницаkontrol (710018) страница 62016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

3. Решить задачи по теме “ Вписанные, описанные пирамиды ”.

4. Проверить навыки решения задач по теме “Сечения цилиндра”.

5. Проверить практическое усвоение материала.

Ход урока:

I Оргмомент

II Проверка домашнего задания

III Подготовка к изучению нового материала.

Перед тем, как решать задачи по теме “Вписанные, описанные пирамиды”, учащиеся отвечают на следующие вопросы:

  1. Что такое касательная плоскость к конусу?

  2. Какая пирамида называется вписанной в конус?

  3. Какая пирамида называется описанной около конуса?

IV Применение учащимися знаний в различных конкретных ситуациях.

Каждому ученику выдается подставка, штырь и проволока.

З
адание:
Выгнуть фигуру, при вращении которой получается усеченный конус; фигуру при вращении которой получается конус, поставленный на цилиндр.


V Решение задач

На этом уроке решаются задачи по темам “Сечения конуса”, “Вписанные, описанные пирамиды ”.

VI Сообщение домашнего задания

VII Самостоятельная работа

В конце урока проводится самостоятельная работа общепринятого характера по теме “Сечения конуса”. В этой работе учащимся предлагается самим решить задачи без помощи учителя.

  1. Радиус основания конуса 6 см (10 см). Через середину высоты проведено сечение параллельно основанию. Найти площадь сечения. Ответ: 9 (2 ).

  2. Радиусы оснований усеченного конуса относятся как 5:3, образующая равна 17 см (10 см), высота – 15 см (8 см). Найти площадь осевого сечения конуса. Ответ: 480 см (192 см ).

С целью развития навыков самообразования и самоконтроля учащимся сразу даются ответы к задачам.

VIII Подведение итогов

п.2.3. Тема: “Шар. Сфера”

На решение задач по теме “Шар. Сфера” отведено 3 часа.

Из них:

  1. “Сечение шара” – 1 час

  2. “Касание шара” – 1 час

  3. “Вписанные, описанные многогранники” – 1 час

Урок 1. Тема Сечение шара

Цели урока:

1. Развить пространственное воображение.

2. Проверить знания по теме “Основные элементы шара. Сечение шара”.

3. Научить учащихся применять полученные знания к решению задач.

Ход урока:

I Оргмомент

II Проверка домашнего задания

III Подготовка к решению задач.

Перед тем, как решать задачи, необходимо выяснить как учащиеся усвоили теорию по теме “Шар. Сфера”(определения, основные элементы, сечения). С этой целью проводится викторина. Учитель предлагает ученикам ответить на следующие вопросы:

  1. Что называется шаром?

  2. Что такое сфера?

  3. При вращении какой фигуры получается шар?

  4. Что называется радиусом шара, диаметром шара?

  5. Сделать чертеж шара. Показать на нем основные элементы шара.

  6. Каким свойством обладают все точки поверхности шара?

  7. Найти геометрическое место точек, удаленных от данной точки на расстояние, которое меньше или равно 10 см (шар радиусом 10 см).

  8. Какая фигура является сечением шара плоскостью?

  9. Какая плоскость называется диаметральной плоскостью шара?

Ученики отвечают на вопросы с места, обсуждая каждый вопрос викторины. За более правильный, точный ответ учащиеся получают красный жетон, если же в ответе есть какие-то неточности, то выдается зеленый жетон. В том случае, если ученик дополнял ответы, то ему выдается синий жетон. В конце урока подводится итог. Наиболее активным ученикам выставляются оценки в журнал.

IV Расширение и углубление знаний, умений и навыков учащихся.

Каждому ученику выдается подставка, штырь и проволока, из которой предлагается выгнуть полуокружность с радиусом 15 см.

Закрепив фигуру на штыре они вращают ее вокруг диаметра. Вращая ее так, они получают наглядное представление о сфере.

V Решение задач по теме “Сечения шара”.

В ходе решения задач учащимся предлагается ответить на следующие вопросы:

  1. Сформулируйте теорему Пифагора.

  2. Какая фигура называется кругом. Окружностью.

  3. Чему равна площадь круга?

  4. Какой треугольник называется вписанным в окружность?

  5. Как выражается через стороны треугольника и радиус описанной окружности площадь треугольника? (S = )

  6. Чему равна площадь треугольника по формуле Герона?

(S = , p = )

VI Сообщение домашнего задания.

VII Подведение итогов урока.

Урок 2. Тема Касания шара

Цели урока:

1. Развить пространственное воображение.

2. Проверить навыки решения задач по теме “Сечение шара”.

  1. Закрепить знания по теме “Касания шара”.

  2. Совершенствовать навыки решения задач по теме “Шар. Сфера”.

  3. Проверить практическое усвоение материала.

Ход урока:

I Оргмомент

II Проверка домашнего задания

На дом учащимся было задано 4 задачи по теме “Сечение шара”. Для проверки усвоения этой темы, а также правильности выполнения домашнего задания, проводится самостоятельная работа, содержащая такие же задачи, как в домашнем задании.

Приведем один из вариантов.

I Вариант

Задача 1. Сечение шара плоскостью имеет площадь 36 ). Радиус шара 10м. Найти расстояние от центра шара до плоскости сечения.

Д ано: шарS(O,OX) S = 36 ) , R = OX = 10 м

Найти: ОО

Решение:

1. Любое сечение шара плоскостью есть круг. S = r 36 = r r = 36 (м )

2. ОО Х – прямоугольный

ОО = h , O X = r , OX = R

h = R - r - т. Пифагора

h =100 – 36 =64, h = 8 м

Ответ: h = 8м

Задача 2. На поверхности шара даны три точки, кратчайшее расстояние между которыми равно 6 см. Определить площадь сечения, проходящего через эти точки.

Решение:

1. Пусть А, В, С – три данных точки. Рассмотрим сечение шара плоскостью. Это будет круг, окружность которого описана около АВС; R – радиус окружности, описанной около АВС R =

2. S = p = ; p = = 9(см)

S = = 9 (см )

3. R = = (см)

  1. Любое сечение шара плоскостью – круг

S = R S = = 12 (см )

Ответ: S = 12 (см )

После того, как ученики сдали листочки с ответами, учитель открывает на доске ответы. Учащиеся проверяют решения в тетрадях друг друга. Все оценки за эту работу выставляются в журнал.

III Практическая работа.

Каждому ученику выдается подставка, штырь и проволока разных цветов.

Задание: Из проволоки разных цветов выгнуть фигуру при вращении которой получится сфера и вписанный в нее цилиндр.

Закрепив фигуру на штыре они вращают ее вокруг оси. Вращая ее так, они получают наглядное представление о вписанном цилиндре.

IV Решение задач по теме “Касательная плоскость к шару”.

В ходе решения задач учащимся задаются следующие вопросы:

  1. Какая плоскость называется касательной к шару?

  2. Сколько общих точек с шаром имеет касательная плоскость?

  3. Какая прямая называется касательной к шару?

  4. Сколько можно провести прямых, касающихся поверхности шара в одной и той же точке? (бесчисленное множество)

  5. Чему равна площадь круга?

V Сообщение домашнего задания

VI Подведение итогов урока

Урок 3. Тема Вписанные и описанные многогранники

Цели урока:

  1. Развитие пространственного воображения

  2. Закрепление основных понятий по теме “ Вписанные и описанные многогранники ”

  3. Научить применять полученные знания при решении задач

  4. Проверить практическое усвоение материала

Ход урока:

I Оргмомент

II Проверка домашнего задания

Используется следующая форма проверки домашнего задания – самопроверка по образцу. На доске выписана задача из домашнего задания с решением. Учащиеся проверяют свои решения по образцу.

№ 40 Погорелов

Стороны треугольника 13, 14, 15 см. Найти расстояние от плоскости треугольника до центра шара, касающегося всех сторон треугольника. Радиус шара 5 см.

Решение:

  1. Рассмотрим треугольник АВС со сторонами 13, 14, 15 см

S = p = ; p = = 21(см)

S = = 84 (см )

  1. S АВС = pr , где r – радиус вписанной окружности

S = 21r 84 = 21r r = 4 см

  1. h =R - r - т. Пифагора

h = = 3 (см)

Ответ: h = 3 (см)

Проверка домашнего задания имеет 2 цели:

  1. Проверка правильности выполнения домашнего задания

  2. Подготовка учащихся к самостоятельной работе

III Самостоятельная работа

В учебнике Погорелова [19] есть 2 важные теоремы (сечение шара плоскостью и касательная плоскость к шару), знание которых необходимо проверить. Поэтому в самостоятельную работу включаются эти теоремы, которые ученики должны доказать. Кроме этого в самостоятельную работу включена задача обязательного уровня математической подготовки.

Приведем II вариант самостоятельной работы.

  1. Докажите, что касательная плоскость имеет с шаром только одну общую точку – точку касания.

  2. Стороны треугольника равны 5, 5, 6 см. Найдите расстояние от плоскости треугольника до центра шара, касающегося всех сторон треугольника. Радиус шара равен (см)

Решение:

  1. Рассмотрим треугольник АВС со сторонами 5, 5, 6 см

S = p = ; p = = 8(см)

Характеристики

Тип файла
Документ
Размер
2,28 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7029
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее