TMO KURSOVIK (708805), страница 2
Текст из файла (страница 2)
1.8.3 Вычисляем эквивалентный диаметр
где U - смоченный периметр, м, (U=9,7 м),
1.8.4 Определяем смоченный периметр
, М
U=3,14[0,455+91 0,029]=9,7 м;
1.8.5 Определяем режим течения пара в межтрубном пространстве
где Reп - критерий Рейнольдса для пара; (Re=225621,6),
νп - коэффициент кинематической вязкости пара,
, (uп=3,7 10-6
),
Если Re> 104 - режим течения турбулентный. Тогда критерий Нуссельта для пара составит
где Ргп - критерий Прандтля для пара.
Полученные результаты подставляем в формулу.
Nuп=0,023 232113.1960,8 1,20,4=485.244;
1.9 Вычисляем коэффициент теплопередачи в 1- и зоне
где δст-толщина трубки, м; (δст=0,001 м),
δн = 0,2-толщина накипи, мм;
λст-коэффициент теплопроводности материала трубки,
;
λн=3,49 коэффициент теплопроводности накипи,
.
1.10 Определяем температурный напор в 1-й зоне
где t``` - температура воды на границе между зонами, °С,(t```=88,37 oC),
1.11 Поверхность теплообмена первой зоны составит
1.12 Рассчитаем поверхность теплообмена во 2-й зоне.
Будем считать, что в этой зоне коэффициент теплоотдачи от внутренней стенки трубки к жидкости равен коэффициенту теплоотдачи в 1-ой зоне. Это допустимо, так как свойства воды во 2-й зоне мало отличаются от свойств воды в 1-й зоне.
Определим коэффициент теплопередачи для 2-й зоны k2 графоаналитическим методом. Для этого предварительно находим для различных участков перехода теплоты зависимость между удельным тепловым потоком q и перепадом температур Δt.
1.12.1 Передача теплоты от пара к стенке.
1.12.2 Определяем удельный тепловой поток
где В' - безразмерный коэффициент; (В`=16557,04),
hтр - предполагаемая высота трубок, м, (hтр=4 м),
Вычисляем безразмерный коэффициент
В`=1,34 [5700+56 160-0,09 1602]=16557,04;
Задавшись рядом значений Δt1, вычислим соответствующие им величины Δt10,75 и q1. Строим кривую
(рис. 3).
Таблица 1
| Δt1 | 10 | 20 | 30 | 40 | 50 | 60 |
| Δt10.75 | 5,6 | 9,5 | 12,8 | 15,9 | 18,8 | 21,6 |
| q1 | 65.837 | 110.723 | 150.075 | 186.214 | 220.138 | 252.395 |
1.13 Передача теплоты через стенку.
1.13.1 Определяем плотность теплового потока
Задавшись двумя значениями Δt2, вычисляем соответствующие им величины q2. Строим кривую
(рис. 3).
Таблица 2
| Δt2 | 5 | 10 | 15 | 20 |
| q2 | 190 | 380 | 570 | 760 |
1.14 Передача теплоты через накипь.
1.14.1 Вычисляем удельный тепловой поток
Задавшись двумя значениями Δt3, определим соответствующие им величины q3. Строим кривую
(рис. 3).
Таблица 3
| Δt3 | 5 | 10 | 20 | 30 | 40 |
| q3 | 87,25 | 174,5 | 349 | 523,5 | 698 |
1.15 Передача теплоты от накипи к воде.
1.15.1 Вычисляем удельный тепловой поток
Задавшись двумя значениями Δt4, определим соответствующие им величины q4. Строим кривую
(рис. 3).
Таблица 4
| Δt4 | 5 | 10 | 15 | 20 |
| q4 | 38,5 | 77 | 115,5 | 154 |
1.16 Рассчитаем средний температурный напор во 2-й зоне
Складываем ординаты четырех зависимостей, строим кривую температурных перепадов. На оси ординат из точки, соответствующей Δt2, проводим прямую, параллельную оси абсцисс, до пересечения с кривой
. Из точки пересечения опускаем перпендикуляр на ось абсцисс и находим значение удельного теплового потока qгр,
.
Σt=51+5.96+12.98+0.0005463=70.89 oC;
1.17 Определяем коэффициент теплопередачи во 2-й зоне
1.18 Поверхность теплообмена во 2-й зоне составит
1.19 Определяем суммарную поверхность теплообмена
F=F1+F2 , м2.
F=73.7+0,431144 =74.169 м2.
1.20 Вычисляем длину трубок
где dср - средний диаметр трубок, м; (dср =0,028 м)
Не рекомендуется устанавливать трубки длиной более 5 м. Следовательно, необходимо уменьшить длину трубок. Для этого выбираем многоходовой подогреватель. Тогда общее число трубок составит
где m - число ходов теплообменника, (m=2);
n2=65 2=130шт.
При nс=187 шт., определяем D`=0,5684 м.
Проведем повторный расчет уже для многоходового теплообменника по формулам.
Внутренний диаметр корпуса составит
Dвн = D' + dн + 2К, м.
DBH=0,5684+0,029+0,02=0,6174 м.
1.21 Рассчитаем поверхность теплообмена в 1-й зоне.
1.21.1 Определяем площадь межтрубного пространства для прохода пара:
Определяем скорость пара в межтрубном пространстве
где ρп - плотность пара,
; (rп=3,9
),
Dп - массовый расход пара,
; (Dп=8,14
),
1.21.2 Определяем коэффициент теплоотдачи от пара к трубе
где Nuп - критерий Нуссельта для пара;
λп - коэффициент теплопроводности пара,
; (lп=0,0316
),
dЭ - эквивалентный диаметр, м, (dэ=0,037 м),
1.21.3 Вычисляем эквивалентный диаметр
где U - смоченный периметр, м, (U=18.97 м),
1.21.4 Определяем смоченный периметр
, М
U=3,14[0,699+241 0,029]=18.97 м;
1.21.5 Определяем режим течения пара в межтрубном пространстве
где Reп - критерий Рейнольдса для пара;
νп - коэффициент кинематической вязкости пара,
, (uп=3,7 10-6
),
Если Re> 104 - режим течения турбулентный. Тогда критерий Нуссельта для пара составит
где Ргп - критерий Прандтля для пара, (Prп=1,2).
Полученные результаты подставляем в формулу.
Nuп=0,023 86405,40,8 1,20,4=284.134;
1.22 Вычисляем коэффициент теплопередачи в 1- и зоне
где δст-толщина трубки, м; (δст=0,001 м),
δн = 0,2-толщина накипи, мм;
λст-коэффициент теплопроводности материала трубки,
;
λн=3,49 коэффициент теплопроводности накипи,
.
1.23. Определяем температурный напор в 1-й зоне
где t``` - температура воды на границе между зонами, °С,(t```=88,37 oC),
1.24 Поверхность теплообмена первой зоны составит
1.25 Рассчитаем поверхность теплообмена во 2-й зоне.
Будем считать, что в этой зоне коэффициент теплоотдачи от внутренней стенки трубки к жидкости равен коэффициенту теплоотдачи в 1-ой зоне. Это допустимо, так как свойства воды во 2-й зоне мало отличаются от свойств воды в 1-й зоне.
Определим коэффициент теплопередачи для 2-й зоны k2 графоаналитическим методом. Для этого предварительно находим для различных участков перехода теплоты зависимость между удельным тепловым потоком q и перепадом температур Δt.
1.25.1 Передача теплоты от пара к стенке.
1.25.2 Определяем удельный тепловой поток
где В' - безразмерный коэффициент; (В`=16557,04),
hтр - предполагаемая высота трубок, м, (hтр=4м).
Вычисляем безразмерный коэффициент
В`=1,34 [5700+56 160-0,09 1602]=16557,04;
Задавшись рядом значений Δt1, вычислим соответствующие им величины Δt10,75 и q1. Строим кривую
(рис. 3).
Таблица 5
| Δt1 | 10 | 20 | 30 | 40 | 50 | 60 |
| Δt10.75 | 5.6 | 9.5 | 12.8 | 15.9 | 18.8 | 21.6 |
| q1 | 66,2 | 112,1 | 151,04 | 187,62 | 221,84 | 254,88 |
1.26 Передача теплоты через стенку.
1.26.1 Определяем плотность теплового потока















