109061 (707870), страница 2

Файл №707870 109061 (Лабораторные стенды в учебном процессе) 2 страница109061 (707870) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Дешифратор двоичного кода реализован на второй половине микросхемы DD11 типа К514ИД2. Для включения только второй половины микросхемы необходимо подать на вход W2 логический "0", что и делает галетный переключатель, когда включает цепь: земля - вход W2 (положение переключателя S14.2 - восьмое). Код (адрес) передается от счетчика DD3 по адресной шине А1 и А2. Выходные логические уровни индицируются светодиодами НL58-HL62.

Демультиплексор DD11 типа К155ИД4 используется вместе с мультиплексором DD10 типа К155КП7. Входные логические уровни мультиплексора задаются переключателями S5-S8, адресная шина подключена к выходной шине счетчика DD3, который также необходим в этой работе. Третий адресный вход А3 соединен со входом V и с землей через галетный переключатель S14.2:7. Вход А3 соединен с "землей", так как используются только четыре входа мультиплексора, а вход V соединен с "землей", так как это вход разрешения, а также потому, что это инверсный вход. Входные и выходные логические уровни индицируются светодиодами HL48 - HL53.

Демультиплексор DD11 работает только, когда галетный переключатель S14.2 находится в положении "семь". В этом случае на вход W1 подается логический "0", который включает половину дешифратора К155ИД4 - DCD. На вход Е подается информация с мультиплексора DD10. Диоды VD7, VD8 необходимы для обеспечения правильной работы демультиплексора, а также R77 - R79, создающие необходимый логический уровень на выходах демультиплексора -E, W1, а также W2. Входные логические уровни индицируются светодиодами HL52, HL53, выходными светодиодами HL54 - HL57. Диоды VD4, VD5 необходимы для того чтобы не отключались светодиоды счетчика DD3. Диоды VD7, VD8 также необходимы как развязывающие при работе мультиплексора и демультиплексора в режиме уплотнения каналов.

Узел арифметико-логического устройства выполнен на микросхеме DD13 типа К155ИП3. На входы операнда А поданы соответствующие логические уровни, выраженные словом-1011, это сделано из-за необходимости уменьшить количество переключателей, что в свою очередь существенно уменьшает габариты корпуса стенда. На входы операнда В подаются логические уровни С переключателей S5 - S8, которые могут изменять операнд В. Входы выбора режима работы - входы S - подключены к выходным шинам счетчика DD3, который и управляет входами S (то есть входы определяющие операцию, выполняемую с операндами А и В). Входы S выполняют функции задатчика кода операции, они могут быть либо 16 арифметических, либо 16 логических. Вход М - вход выбора вида операций, в зависимости от положения переключателя S13 выполняются либо арифметические, либо логические операции. Выход "А=В" - выход цифрового компаратора, определяющего соотношения между операндами А и В, выход Сn+4-выход переноса, который показывает переполнение выходной шины АЛУ. Входные и выходные уровни логической информации индицируется светодиодами HL64 - HL74.

Узел оперативно - запоминающего устройства (ОЗУ) реализован на микросхеме DD13. Входы адресной шины подключены к выходной шине счетчика DD3. Входы данных подключены к переключателям S5 - S8. Вход разрешения записи - вход WE задается через переключатель S13, вход выбора кристалла - вход CS - задается переключателем S9. Входные и выходные логические уровни индицируются светодиодами HL63, HL75 - HL83.

Узел аналого-цифрового и цифро-аналогового устройств ( соответственно АЦП и ЦАП) выполнен на микросхеме DA1 типа К551УД2А, в которую входят два операционных усилителя (ОУ) - DA1.1 и DA1.2. ЦАП реализован на ОУ DA1.1, подключенный инверсным входом к сопротивлениям R89-R92, соединенные в свою очередь с выходной шиной счетчика DD3. Выходной сигнал снимается с гнезда Х50. АЦП реализован на той же схеме ЦАП с подключением ко входу счетчика DD3 "прямой счет" элемента И-НЕ, к которому подключены формирователь и ОУ DA1.2 выходом через инвертор. ОУ DA1.2 работает в качестве аналогого компаратора, на один из входов которого подается изменяющееся, с помощью сопротивления R1, входное напряжение. Аналоговый компаратор реализован, как уже было сказано выше, на ОУ DA1.2. В этих работах на стенде используются гнезда Х46 - Х51.

Коммутация всех лабораторных работ осуществляется галетным переключателем S14. Он подключает напряжение питания (+5 В) секцией S14.1 или общий провод секцией S14.2 для подачи напряжения на светодиоды соответствующей лабораторной работы. При включении логики ("Л"), что соответствует проведению лабораторной работы "логические элементы" плюс 5 В (через S14.1:1) подается на светодиоды HL30, HL32, HL33, HL35. Во всех остальных положениях переключателя S14.1 питание подается на светодиод HL34, так как он используется во всех лабораторных работах, кроме работы "логические элементы". На индикаторную матрицу питание подается только в положении S14.1:6 при изучении работы дешифратора. На светодиоды HL31, HL36 - HL47 и HL4 - HL13 питание подается только в соответствующих положениях переключателя S14.2. ("Ф", "Т", "Р"), поскольку при других работах эти узлы не используются. На светодиоды HL24, HL25 питание подается в положениях S14.2 "С", "Д", "П", "ALU", "RAM" и ЦАП и АЦП, для чего используются развязывающие диоды VD3 - VD5. На остальные светодиоды счетчика DD3 и светодиоды мультиплексора, ALU питание подается только в соответствующих положениях переключателя S14.2. Светодиоды HL75 - HL78 питание плюс 5 В подается в положении переключателя S14.1:10, это сделано из-за того что выходы микросхемы инверсные, остальные светодиоды HL63, HL79 - HL83 подключаются к питанию через переключатель в положении S14.2:10.

Около каждой микросхемы установлены конденсаторы С2 - С14. Они служат для уменьшения высокочастотных пульсаций по цепям питания и предотвращают возможное появление высокочастотной генерации микросхем. Для уменьшения низкочастотных пульсаций служит электролитический конденсатор С1, емкостью 500 мкФ.

В схеме предусмотрены также формирователь логической "1", собранный на транзисторе VT (КТ815А) и стабилитроне VD2 (КС147А). Он собран по схеме простейшего стабилизатора напряжения, и особенностей не имеет. Этот узел необходим, поскольку напряжение плюс 5 В нельзя непосредственно подавать на входы микросхем (допускается подача на вход U<=4,5 В по ТУ). В условиях изменяющейся нагрузки (кнопки и переключатели могут быть в разных положениях, подключая различное количество цепей со светодиодами) одинаковую яркость свечения светодиодов в любой ситуации может обеспечить только стабилизатор напряжения.

В схеме предусмотрена параллельная защита от неправильного включения источника питания. Она содержит стабилизатор VD1 (КС156А) и предохранитель F1 на 0,5 А.

В нормальном режиме работы, то есть когда напряжение на входе включено в правильной полярности и не превышает 5,6 В, стабилитрон VD1 закрыт, и не оказывает никакого влияния на работу остальной части схемы. Если же напряжение на входе превысит напряжение стабилизации стабилитрона VD1 (5,6 В), последний входит в режим лавинного пробоя и ограничивает подаваемое на остальную часть схемы напряжение на уровне, не превышающем 6 В. Поскольку ограничивающее сопротивление отсутствует, то ток через предохранитель и стабилитрон течет большой, и поэтому предохранитель быстро расплавляется, разрывает питание схемы.

Похожие процессы происходят и при неправильном подключении полюсов источника питания. Предохранитель F1 и в этом случае также быстро расплавляется, разорвав питание схемы.

Для питания стенда необходим внешний источник питания с Uпит=5 В + 0,5 В и током не менее 0,5 А.

2.3. Электрический расчет принципиальной схемы

2.3.1. Расчет дешифратора.

Дешифратор - это электронный узел, осуществляющий микрооперацию преобразования сигналов входного

n - разрядного кода числа в выходной сигнал на одной из m=2

выходных шин. Сигналы, соответствующие переменным входного кода - Х1, Х2, ... Хn, выходные сигналы дешифратора - Y1, Y2, ... Ym ,Ym.

Дешифраторы являются узлами комбинационного типа, в которых каждой комбинации входных аргументов соответствует одна и только одна единичная выходная функция. Выходные функции дешифратора описываются следующей системой логических выражений:

Y1=X1*X2* ... *Xi* ... *Xn *Xn

Y2=X1*X2* ... *Xi* ... *Xn *Xn

Yi=X1*X2* ... *Xi* ... *Xn *Xn

Ym =X1*X2* ... *Xi* ... *Xn *Xn

Ym=X1*X2* ... *Xi* ... *Xn *Xn

Из системы уравнений следует, что для построения дешифратора, преобразующего n - разрядный двоичный код, необходимо иметь m электронных логических элементов И с n входами каждый.

2.3.2. Расчет мультиплексных схем.

Мультиплексные схемы собираются из мультиплексора или демультиплексора.

Мультиплексор - коммутатор, передающий информацию с N - входов на один из выходов в зависимости от двоичного адреса.

Демультиплексор - узел, последовательно распределя-ющий по выходам сигналы, поступающие на его вход. Т.е. передает информацию с единственного входа на один из N - выходов в зависимости от двоичного адреса. С помощью демультиплексора можно осуществить поочередное включение и выключение устройств. Используя это свойство можно экономить на количестве шин.

Мультиплексор устанавливается со стороны передатчика информации, поступающей на входы D1 - D4 при этом количество информационных шин J=2A, где А - число адресных входов.

Демультиплексор устанавливается со стороны приемника информации, причем на его выходах Q1 - Q4 информация воспроизводится поочередно. Таким образом число шин канала связи K = A + 1 (адресные шины плюс одна информационная). Такая схема позволяет экономить шины канала связи в количестве =J-K.

Например, при А=4 мультиплексная схема способна передать двоичное слово, содержащее 16 разрядов (J=24); = 16 - (4+1) = 11, т.е. экономится 11шин.

Расчет надежности устройства

2.4.1. Исходные данные.

Электрическая схема устройства и перечень ее элементов. Режимы работы всех элементов. Интенсивность отказов всех элементов в нормальных условиях эксплуатации при нормальной нагрузке. Условия эксплуатации:

- лабораторные;

- температура окружающей среды: 20 5 градусов ;

- диапазон относительных давлений: 630 - 800 мм рт.ст.;

- влажность: 60 15 процентов. Средняя наработка до первого отказа не менее: 60000 часов.

2.4.2. Расчет электрической нагрузки элементов.

Таблица 2.1 Карта рабочих режимов резисторов

Наименование элемента

Ррас,Вт

Рту,Вт

Кн

Резистор постоянный МЛТ-0,125 ВТ

0,1

0,125

0,8

Резистор переменный СП-0,25 Вт

0,1

0,25

0,4

Таблица 2.2 Карта рабочих режимов конденсаторов

Наименование элемента

Uраб,В

Uту,В

Кн

Конденсатор электролитический алюминиевый

5

16

0,31

Таблица 2.3 Карта рабочих режимов светодиодов

Наименование элемента

Uраб,В

Uту,В

Кн

Светодиод

1,5

2

0,75

Таблица 2.4 Карта рабочих режимов микросхем

Наименование элемента

Ррас,Вт

Рту,Вт

Кн

Микросхема интегральная

0,1

0,3

0,33

Составим схему соединения изделий по надежности.

Таблица 2.5 Схема соединений изделий по надежности

Наименование

Количество элементов, шт.

Интенсивность отказов номинальная

Поправочный коэффициент

Резистор постоянный МЛТ-0,125 Вт

51

0,4

0,8

Светодиод

34

5

0,9

Микросхема

6

1,5

0,1

Микропереклю чатель

12

30

0,1

Гнезда контактные

31

0,2

0,07

Пайка

234

0,004

0,1

2.4.3. Расчет зависимости вероятности безотказной работы от наработки проведен на IBM.

Программа вычисления наработки до первого отказа:

10 PRINT "ВВЕДИТЕ КОЛИЧЕСТВО НАИМЕНОВАНИЙ ЭЛЕМЕНТОВ"

20 INPUT M

30 FOR I = 1 TOM

40 PRINT "ВВЕДИТЕ КОЛИЧЕСТВО ЭЛЕМЕНТОВ"

50 INPUT X

60 PRINT "ВВЕДИТЕ ИНТЕНСИВНОСТЬ ОТКАЗОВ НОМИНАЛЬНУЮ"

70 INPUT Y

80 PRINT "ВВЕДИТЕ ПОПРАВОЧНЫЙ КОЭФФИЦИЕНТ"

90 INPUT Z

100 LET A = X * Y * Z + A

110 NEXT I

120 LET B = A * 1E - 6

130 PRINT "ВВЕДИТЕ ПОПРАВОЧНЫЙ КОЭФФИЦИЕНТ НА УСЛОВИЯ ЭКСПЛУАТАЦИИ"

140 INPUT C

150 LET D = B * C

160 LET E = 1/D

170 PRINT "СРЕДНЯЯ НАРАБОТКА ДО ПЕРВОГО ОТКАЗА";E

180 PRINT "ВВЕДИТЕ ЧИСЛО ТЕКУЩИХ ЗНАЧЕНИЙ ВРЕМЕНИ"

190 INPUT Q

200 FOR S = 1 TO Q

210 PRINT "ВВЕДИТЕ ТЕКУЩЕЕ ЗНАЧЕНИЕ ВРЕМЕНИ"

220 INPUT T

230 LET K = D * T

240 LET P = 1/EXP(K)

250 PRINT "ВЕРОЯТНОСТЬ БЕЗОТКАЗНОЙ РАБОТЫ";P

260 NEXT S

270 END

Средняя наработка до первого отказа Тср=71281,93часа.

Расчет надежности стенда на IBM.

10 CLS

20 SCREEN 2

30 PRINT "РАСЧЕТ НАДЕЖНОСТИ РЭА "

40 PRINT "----------------------------------------"

50 PRINT " НАЖМИТЕ ПРОБЕЛ "

60 PRINT "----------------------------------------"

80 IF INKEY$ <> " " THEN GOTO 80

90 CLS

95 SCREEN 1

100 PRINT "ВВЕДИТЕ КОЛИЧЕСТВО НАИМЕНОВАНИЙ";

110 INPUT N

120 IF N <= 0 OR INT(N) <> N THEN GOTO 90

130 CLS

140 FOR I = 1 TO N

150 PRINT "НАИМЕНОВАНИЕ НОМЕР ("; I; ")"

160 PRINT "

170 PRINT "

180 PRINT "

190 PRINT "ВВЕДИТЕ КОЛИЧЕСТВО ЭЛЕМЕНТОВ";

200 INPUT X

210 PRINT "ВВЕДИТЕ ИНТЕНСИВНОСТЬ ОТКАЗОВ";

220 INPUT Y

230 PRINT "ВВЕДИТЕ ПОПРАВОЧНЫЙ КОЭФФИЦИЕНТ";

240 INPUT Z

250 A = X * Y * Z + A

260 NEXT I

270 PRINT "ВВЕДИТЕ ПОПРАВОЧНЫЙ КОЭФФ. НА УСЛОВИЯ ЭКСПЛУАТАЦИИ";

280 INPUT C

290 IF C = 0 THEN GOTO 270

300 PRINT "ВВЕДИТЕ СРЕДНЮЮ НАРАБОТКУ ДО ПЕРВОГО ОТКАЗА ЗАДАН-

НУЮ";

310 INPUT TSRZ

320 D = A * .000001 * C

330 G = 1 / D

340 CLS

350 PRINT "СРЕДНЯЯ НАРАБОТКА ДО ПЕРВОГО ОТКАЗА Tср.р.="; G;

"ЧАС."

360 IF G < TSRZ THEN PRINT "Tср.р. НЕ СООТВЕТСТВУЕТ ТУ";

370 IF G >= TSRZ THEN PRINT "Tср.р. СООТВЕТСТВУЕТ ТУ";

380 IF G < 1000 THEN GOTO 420

390 IF G < 10000 THEN GOTO 440

400 IF G < 100000 THEN GOTO 460

410 IF G < 1000000 THEN GOTO 480

420 S = (INT(G / 100) + 1) * 100

430 GOTO 490

440 S = (INT(G / 1000) + 1) * 1000

450 GOTO 490

460 S = (INT(G / 10000) + 1) * 10000

470 GOTO 490

480 S = (INT(G / 100000) + 1) * 100000

490 PRINT

500 PRINT "ТАБЛИЦА ДЛЯ ПОСТРОЕНИЯ ГРАФИКА

ЗАВИСИМОСТИ P(T)=EXP(-T/Tср.)"

510 FOR I = 0 TO S STEP S / 10

520 PRINT " X="; I, "Y="; 1 / EXP(D * I)

530 NEXT I

540 PRINT

550 PRINT "ПОСЛЕ ТОГО КАК ВЫ ЗАПИШИТЕ, ДЛЯ ВЫВОДА ГРАФИКА НАЖМИТЕ ПРОБЕЛ";

560 IF INKEY$ <> " " THEN GOTO 560

570 CLS

580 SCREEN 2

590 PRINT " ГРАФИК ФУНКЦИИ P(T)=EXP(-T/Tср.р.)"

600 LINE (0, 200)-(0, -200)

610 LINE (0, 0)-(600, 0)

620 PSET (0, 0)

630 FOR I = 0 TO S STEP S / 10

640 X =I / 10

650 Y = (1 / EXP(D * 1)) * 100

660 IF X >= 600 THEN GOTO 690

670 LINE -(X, Y)

680 NEXT I

690 LINE -(600, Y)

700 IF INKEY$ <> " " THEN GOTO 700

710 SCREEN 1

720 CLS

730 PRINT "РАСЧЕТ ФУНКЦИИ P(T)=EXP(-T/Tср.р.) ДЛЯ ЛЮБЫХ (T)"

740 PRINT "ВВЕДИТЕ (T) ЗАДАННОЕ ОТ "; 0; " ДО"; S

750 PRINT "Tз.=";

760 INPUT TZ

770 IF TZ S THEN GOTO 760

780 PRINT "ПРИ Tз.="; TZ; " ФУНКЦИЯ P(T)="; 1 / EXP(D * TZ)

790 PRINT

800 PRINT " ПРОДОЛЖИТЬ ВЫЧИСЛЕНИЯ (Y/N)";

810 INPUT A$

820 IF A$ = "Y" THEN GOTO 720

830 GOTO 10

2.4.5. Разработка печатной платы стенда

Компоновка печатной платы (размещение в пространстве или на плоскости) элементов, имеющих электрические соединения в соответствии с принципиальной схемой, и обеспечение допускаемого минимума паразитных взаимодействий, которые не нарушают значение расчетных выходных параметров РЭА.

Оптимальное размещение элементов преследует две важнейшие цели: снижение искажений сигналов и повышение технологичности изготовления конструктивных единиц за счет создания благоприятных условий для трассировки меж соединений элементов.

Наибольшее распространение получили критерии размещения, позволяющие прямо или косвенно достичь цели, то есть получить наименьшую суммарную длину всех соединений схемы либо числа пересечений проводников, либо наибольшей суммарной длины соединений источника сигнала.

Печатная плата стенда была разработана на основе этих требований. Она представляет собой прямоугольник фольгированного стеклотекстолита СФ - 2, размерами 400х260мм, с прямоугольным вырезом в правом верхнем углу, размерами 65х65мм для переключателя рода работ.

Кроме крепежных отверстий и отверстий для пайки радиокомпонентов плата имеет 83 отверстия диаметром 6мм, в которых размещены светодиоды, впаянные непосредственно в плату. Это позволило не применять громоздкий монтаж, для распайки светодиодов, а также в плате укреплены (для распайки элементов) гнезда, под которые просверлены отверстия диаметром 6,5мм. Все радиоэлементы, за исключением коммутационных устройств, располагаются на печатной плате стенда. С монтажной платы на металлический корпус вынесены все переключатели и кнопки. Это позволило избежать воздействия на монтажную плату механических нагрузок.

2.5. Разработка инструкций по настройке функциональных модулей ЛС: дешифратора, мультиплексных схем, арифметико-логических устройств, оперативной памяти.

2.5.1. Инструкция по настройке модуля дешифратора.

2.5.1.1. Включить стенд в сеть, переключить галетный переключатель в положение DC.

2.5.1.2. Проверить напряжение питания, логического 0 и логической 1 у микросхемы DD15.

2.5.1.3. Проверить работоспособность светодиодов HL64 -HL67.

2.5.1.4. Проверить установку логической информации по входам данных на светодиодах HL25, HL26, HL29, HL30.

2.5.1.5. Проверить логическую информацию на выходе по семисегментной матрице И1.

2.5.1.6. Проверить работу дешифратора при прямом и обратном счете счетчика.

2.5.2. Инструкция по настройке модуля мультиплексных схем.

2.5.2.1. Включить стенд в сеть, переключить галетный переключатель в положение MS.

2.5.2.2. Проверить напряжение питания, логического 0 и логической 1 у микросхемы DD12.

2.5.2.3. Проверить работоспособность светодиодов HL38 -HL42, HL47, HL48.

2.5.2.4. Проверить установку логической информации по входам данных на светодиодах HL38 - HL42.

2.5.2.5. Проверить логическую информацию на выходе по светодиодам HL47, HL48.

2.5.3. Инструкция по настройке модуля арифметико-логических устройств.

2.5.4. Инструкция по настройке модуля оперативной памяти.

2.5.4.1. Подключить к сети стенд, переключить галетный переключатель в положение ОЗУ.

2.5.4.2. Проверить напряжение питания, логического 0 и логической 1 у микросхемы DD13.

2.5.4.3. Проверить работоспособность светодиодов HL63, HL75 - HL83.

2.5.4.4. Проверить установку логической информации по входам данных на светодиодах HL80 - HL83, используя переключатели S5 - S8.

2.5.4.5. Проверить установку логической информации по адресным входам, используя выходную шину счетчика DD3.

2.5.4.6. Проверить выходные импульсы микросхемы DD13 с помощью осциллографа С1 - 64.

2.5.4.7. Проверить работу входов WE и CS микросхемы DD15 с помощью переключателей S9 и S13, используя осциллограф С1 - 64.

2.5.4.8. Проверить работу микросхемы DD13 в режимах записи и чтения.

2.5.4.9. После проверки напряжений (импульсов), радиоэлементов, собрать стенд и еще раз проверить работоспособность модуля.

Протокол испытаний

2.6.1. Краткие теоретические сведения.

Преобразователь кода - устройство для перевода одной формы числа в другую.

Мультиплексор - коммутатор с несколькими информационными входами, подключаемыми к одному выходу в зависимости от состояния адресных входов.

При помощи n адресных входов можно выбирать один из 2 информационных сигналов. Обозначение мультиплексора (MS) на принципиальных схемах представлено на рис.2.6.1, где D1 - D4 - информационные входы, А1 и А2 - адресные входы, Y и Y - прямой и инверсный входы.

Демультиплексор - распределитель с одним информационным входом, подключаемым к одному из нескольких выходов в зависимости от состояний адресных входов.

Обозначение демультиплексора (DC) на принципиальных схемах представлено на рис.2.6.2, где D - информационный вход, А1 и А2 - адресные входы, Q1 - Q4 - выходы.

2.6.2. Результат испытания.

Таблица 2.6.1

Испытание работы мультиплексора

D1

D2

D3

D4

A1

A2

Y

Y

1110

0000

1111

0000

0101

0011

1010

0101

Таблица 2.6.2

Испытание работы демультиплексора

D

A2

A1

Q1

Q2

Q3

Q4

1

0101

0011

1000

0100

0010

0001

0

0101

0011

0000

0000

0000

0000

Характеристики

Тип файла
Документ
Размер
130,67 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6390
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее