73817-1 (707737), страница 2

Файл №707737 73817-1 (Научно-философские концепции бесконечности и христианство) 2 страница73817-1 (707737) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Примеров подобной навязчивости история становления теории множеств знает немало. Один из самых знаменитых – это континуум-гипотеза. Г. Кантор очень надеялся и настойчиво стремился доказать, что следующая по величине после мощности множества натуральных чисел a0 идет как раз мощность множества, представляющего собой арифметическую модель континуума (подробнее см., например, [5, гл. 5, 1]).

2a0 = a1

Однако ни самому Кантору, ни его последователям доказать этого не удалось. В 1963 г. П. Коэн показал, что континуум-гипотезу нельзя ни доказать, ни опровергнуть в рамках теории множеств Цермело – Френкеля... Более того, Коэн склонялся к тому, что мощность континуума больше [6, с. 42], чем любое an для любого n, больше a и т.д. ( есть первый бесконечный ординал, соответствующий множеству всех натуральных чисел {1, 2, 3,...})... Бесконечное разоблачает наши наивные ожидания, что в нем «все происходит так, как здесь и теперь». В бесконечном слишком много возможностей. И главное, непонятно вообще, как эти возможности можно было бы «учесть», инвентаризировать.

3. Умудренное незнание

Даже в своих простейших вариантах мир теории множеств оказывается в высшей степени парадоксальным. Трудно сразу представить, что принятие аксиомы выбора, столь казалось бы естественного утверждения, приводит к парадоксу Банаха – Тарского: «Используя аксиому выбора, можно разбить шар на конечное число частей, которые можно переставить так, что получатся два шара такого же размера, как и исходный шар» [7, с. 42]. И сразу, конечно, возникает вопрос: а как это соотносится с физическим миром? Неужели подобное возможно и в отношении вещества?.. Или же аксиома выбора здесь неприменима?.. Мы не знаем ответов на эти вопросы.

Так называемые парадоксы, а точнее, сложнейшие апории, были «язвою» теории множеств с самых первых этапов ее вхождения в научный оборот, уже с 1890-х гг. Так, Б. Рассел, анализируя канторовскую теорему о так называемом «множестве-степени» (теорема о том, что множество всех подмножеств данного множества имеет мощность большую, чем исходное множество), выделил понятие «множества, которое не является элементом самого себя». Например, множество всех множеств не будет таким множеством, а множество натуральных чисел является множеством, не совпадающим ни с каким своим элементом. Если мы рассмотрим множество М всех множеств, не являющихся элементами самого себя, то мы не сможем ни отрицательно, ни утвердительно ответить на вопрос: будет ли оно само множеством того же типа, что и его элементы, т.е. множеством, не содержащим самого себя в качестве элемента? Если мы ответим утвердительно, отсюда следует, что М как содержащее все множества, не являющееся собственным элементом, должно содержать и себя, что противоречит предположению. Если же мы ответим отрицательно, т.е. М не является множеством, не содержащим себя в качестве элемента, тогда, значит, М содержит себя в качестве своего элемента, но все элементы М суть множества, не содержащие себя в качестве своего элемента, т.е. мы опять получаем противоречие. На основании подобных размышлений Рассел сформулировал определение предикативных и непредикативных свойств множеств. Только первые могут действительно определять множества; использование же вторых ведет к парадоксам. Эти наблюдения воплотились в дальнейшем в так называемую теорию типов, которую Рассел развивал совместно с Уайтхедом.

Другим очень неприятным казусом был парадокс Бурали-Форти. Речь в нем идет о множестве W всех порядковых чисел. Согласно конструкциям Кантора, это множество вполне упорядочено, и, следовательно, оно должно иметь соответствующий порядковый тип . Этот тип должен быть больше, чем все типы, содержащиеся в W. Однако по условию W есть объединение всех порядковых типов, т.е. тоже входит в W. И мы тем самым приходим к противоречию: . Бурали-Форти делал из этого парадокса тот вывод, что канторовская теорема о сравнимости любых ординалов неверна. И тогда разрушалось также утверждение и о сравнимости любых кардиналов (мощностей).

Кантор пытался уйти от парадоксов, связанных с «очень большими» множествами, по существу, опять... введением новых аксиом. Уже к концу 1990-х гг. он предлагает (в письмах к Дедекинду) различать множественность (или совокупность) (Vielheit) и множество (Menge). Не всякая множественность есть множество. Если «совместное бытие» всех элементов некоторой множественности (совокупности) можно «мыслить без противоречия», то мы говорим, – по Кантору, – что нам дано некоторое множество. В противном случае мы можем говорить только о множественности или неконсистентной совокупности. Например, именно таков случай, когда мы рассматриваем «совокупность всего мыслимого» или множества всех множеств, не являющихся элементом самого себя из парадокса Рассела. Собственно говоря, теория множеств в своей содержательной части действительна только для множеств, а не для любых совокупностей.

Но как же практически определять, будет ли совокупность консистентной или нет? На основании чего мы можем утверждать, что множественности, которым приписываются даже первые кардинальные числа: a0 (мощность любого счетного множества), a1, .., an – являются консистентными? Ответ Кантора определенен и... неубедителен: утверждение о консистентности этих множеств есть «аксиома обобщенной трансфинитной арифметики» (см. [5, гл. 5, 3]). Но опять, не является ли постулирование подобных свойств для бесконечности ничем не оправданной «навязчивостью» в отношении этого таинственного «объекта»?

Любопытно заметить, что вместе с признанием существования неконсистентных совокупностей рушилась одна из основных интенций теории множеств. Кантор с самого начала стремился преодолеть потенциальность, «дурную бесконечность» потенциальной бесконечности, стремился утвердить рассмотрение бесконечного как актуальной данности. Но в конце концов это оказалось в принципе невозможным. Например, вся совокупность ординалов (участвующая, в частности, и в парадоксе Бурали-Форти) является неконсистентной... «Теория множеств, – пишет чешский математик П. Вопенка, – усилия которой были направлены на актуализацию потенциальной бесконечности, оказалась неспособной потенциальность устранить, а только смогла переместить ее в более высокую сферу» [8, с. 24].

Драматические события истории «приручения» актуальной бесконечности в науке вызывают в памяти классическую дихотомию христианского богословия: апофатический и катафатический путь познания Бога. Катафатическое (от греч. – утвердительный) богословие описывает Бога так, как Он нам является в откровении. Здесь Богу подобают имена – Мудрость, Любовь, Благость и т.д., взятые в превосходной степени. Однако в своей природе, в своей сущности Бог остается трансцендентным и непостижимым. Бог неименуем в своей глубине, и путь приближения к нему есть путь христианской мистики. Соответствующее этому богословие называется апофатическим (от греч. j – отрицательный). «Путь негативный, апофатический стремится познать Бога не в том, что Он есть (т.е. не в соответствии с нашим тварным опытом), а в том, что Он не есть», – пишет В.Н. Лосский [9, с. 261–336]. Путь этот состоит в последовательности отрицаний: исключается все тварное, все тварные качества, включая и «небеса», т.е. ангельский мир. Далее исключаются самые возвышенные атрибуты: благость, любовь, мудрость, – так как Бог выше и всего этого. И наконец, бытие, ибо Бог как источник самого существования выше и бытия. Остается лишь мистический опыт неизреченного предстояния Живому Богу, лицом к Лицу...

Эта традиционная богословская дихотомия как бы отзывается эхом и в научных интерпретациях бесконечности. Исторически традиционный, «консервативный» подход к бесконечности, укорененный еще в греческой античности, – именно «апофатический». Отказываясь рассматривать актуально бесконечное, признавая только потенциальную бесконечность, мы как бы остаемся «по эту сторону» от бесконечности, рассматриваем ее только с точки зрения конечного. Спекулятивные же построения с актуально бесконечным есть уже «катафатика»: мы претендуем познать бесконечное в самом себе. Вся сложность в том, что бесконечность, действительно, нам в некотором смысле «дана». Кантор справедливо писал, что если мы признаем потенциальную бесконечность, то мы должны признать и актуальную [10, с. 297]. Актуальная бесконечность представляет собой как бы «вместилище», в котором разворачивается ряд потенциальной бесконечности (например, натуральный ряд чисел: 1,2,3,..), и это вместилище должно быть уже актуально данным. Мы «видим» это вместилище как бы «боковым зрением»; точнее говоря, мы не можем «видеть» этого вместилища как отдельный «объект», потому что мы сами есть его часть, а грань между субъектом и объектом оказывается здесь снятой... Кантор прав, что нам дано это «объемлющее вместилище», однако каким должен быть «способ передвижения» по нему – вопрос сложный и спорный... В нашем восприятии актуально бесконечного «по ту сторону» субъект-объектной грани опять усматривается некоторая параллель с апофатикой христианского опыта, в которой предстояние Богу лицом к лицу также «неслиянно и нераздельно». Хотя, конечно, есть и существенная разница: опыт, так сказать, «математической апофатики» характерно безличен... Скорее его можно уподобить неоплатонической апофатике: в этом «все» актуально бесконечного открывается нам как бы только «пространство» для личной встречи (см., например, [9]).

Мы говорили выше, что позитивные попытки осмысления бесконечности начались в европейской мысли именно с утверждением христианства. Наличие этой «пуповины», связывающей проблемы бесконечности и теологию, в новейшее время было еще раз убедительно засвидетельствовано работами Кантора. Четыре столетия настойчивых усилий по осмыслению бесконечного не принесли нам много нового знания. Бесконечность и сегодня остается для нас глубокой тайной, такой же непостижимой, как свобода, личность, Бог. Эти попытки, однако, позволили «расчистить почву», лучше осознать, что мы действительно знаем, что нам только кажется, а чего мы просто очень хотим... Благодаря этому мы сегодня можем, в частности, лучше оценить мудрость слов, сказанных на заре новоевропейской науки одним из ее гениальных пионеров, Блезом Паскалем: «Мы знаем, что есть бесконечность, но мы не знаем ее природы... Можно, следовательно, также очень хорошо знать, что Бог есть, не зная того, что Он есть; и мы не должны заключать, что Бога нет из того, что мы неясно осознаем Его природу» (см. [11, p. 161]).

Список литературы

1. Платон. Филеб. – 17e, 4–8 (пер. Н.В.Самсонова).

2. Аристотель. Физика. 207a, 22–27 (пер. В.П.Карпова).

3. Катасонов В.Н. Метафизическая математика XVII века. М.: Наука, 1993.

4. Лейбниц Г.В. Сочинения в четырех томах. Т. 1. М., 1982. С. 312–317.

5. Катасонов В.Н. Боровшийся с бесконечным: Философско-религиозные аспекты генезиса теории множеств Г. Кантора. М.: Мартис, 1999.

6. Коэн П.Дж. Теория множеств и континуум-гипотеза. Библиотека сб. «Математика». М., 1982.

7. Справочная книга по математической логике. Ч. II. Теория множеств. М., 1982.

8. Вопенка П. Математика в альтернативной теории множеств. Новое в зарубежной науке // Математика. М.: Мир, 1983. № 31.

9. Лосский В.Н. Догматическое богословие // Мистическое богословие. Киев, 1991. С. 261–336.

10. Кантор Г. Труды по теории множеств / Отв. ред. А.Н. Колмогоров, А.П. Юшкевич. М., 1985.

Pensees // Pensees de Pascal et de Nicole. Paris, 1852.

Для подготовки данной работы были использованы материалы с сайта http://www.auditorium.ru

Характеристики

Тип файла
Документ
Размер
104,55 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7038
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее