24907-1 (707505), страница 3
Текст из файла (страница 3)
Начав с вопроса о том, какие изменения нужно внести в классические механику и электродинамику, Бор дальше, по сути, искал математическую форму этих изменений. Его постулаты означают определенное преобразование математического выражения классических законов, квантование уравнений классической физики. Взяв за основу классическую модель атома водорода (ротатор), Бор построил для кинетической энергии электрона новую математическую форму, аналогичную кинетической энергии осциллятора Планка. Но из выражения теории Планка Бор сохранил лишь математическую форму, заменив физический смысл. Квантованный вид энергии ротатора привел к квантованию момента импульса, и, следовательно, к дискретности орбит. Постулат квантованности орбит, таким образом, представляет собой математическое соотношение между параметрами системы. А метод его построения – аналогия. Условие же частот Бора является развитием аналогии между вибратором Планка и атомом как излучающими системами. Более того, как показано в работах Бора, квантовый закон излучения можно рассматривать как основанное на принципе соответствия видоизменение классических уравнений.
Однако, к 1922 году наряду с успехами теории Бора-Зоммерфельда стали все больше проявляться ее недостатки. Например, она не объясняла дисперсию, поглощение, рассеяние света, а точные количественные расчеты спектров были получены только для атома водорода, в ней не пояснялись эффекты Пашена-Бака, аномальный эффект Зеемана, теория пасовала при попытке описать поведение атома водорода во взаимно перпендикулярных электрическом и магнитном полях, тонкое и сверхтонкое расщепление спектральных линий и т.д. Спасти ситуацию могла лишь принципиально новая теория квантов, новая как физически, так и математически – квантовая механика.
Для новой квантовой теории атомных процессов характерны два момента. Во-первых, она означала признание прав идеи дискретности в физике. Законы классической физики не ограничивали количественных значений входящих в них величин, постулировалось, что они выполняются для сколь угодно малых масс, энергий и т.д. Новая теория была знаменательна тем, что ввела постулаты Планка и необходимость дискретных представлений в свои исходные уравнения. Тем самым ее уравнения оказались справедливыми для микропроцессов, в которых величина действия сравнима с постоянной Планка. Таким образом, она выступала как обобщение, уточнение классической механики, результат отображения роли дискретности в процессах микромира. Потом выяснилось, что это торжество дискретности означало и торжество непрерывности (корпускулярно-волновой дуализм), то есть трудности теории Бора-Зоммерфельда в значительной степени объяснялись абсолютизацией дискретного.
Первый вариант квантовой механики (матричная механика) был разработан в работах В. Гейзенберга, М. Борна, П. Йордана. На протяжении нескольких лет в рассуждениях физиков преобладала следующая схема. Сначала изучаемый процесс рассматривался в рамках классических теорий с использованием квантовых условий Бора-Зоммерфельда, потом использовался принцип соответствия, координату и импульс раскладывали в ряды Фурье, а от полученной совокупности классических частот, фаз и амплитуд этих рядов переходили к квантовым частотам. Этот путь был "обходным", а отсутствие точных правил преобразования "классика–кванты" приводил часто к ошибкам. В работе же Гейзенберга предлагалось заменить операции над величинами операциями над их совокупностями. Мысленный анализ материала позволил Гейзенбергу, опираясь на подобие математической формы важных уравнений классической теории и условия частот Ритца, записать основные уравнения новой теории, экстраполировать на квантово-механические явления старые уравнения, придать им новый смысл. Рассмотрение предыстории матричной механики показывает также, что этот мысленный анализ стал следствием накопления практики применения математических гипотез на протяжении ряда лет в рамках теории Бора (многократное использование идеи соответствия Бора, связанные с этим неудачи и успехи показали, как нужно истолковывать эту идею, следовательно, сама практика подсказала, какой новый математический аппарат нужно создавать, какими должны быть исходные уравнения новой теории).
В то время как основатели матричной механики в основном развивали идеи Бора, в работах Луи де Бройля основную роль играла гипотеза световых квантов Эйнштейна. Он искал выход из затруднений теории Бора-Зоммерфельда и пришел к выводу о том, что для объяснения таинственной дискретности в явлениях микромира нужно обратиться к понятию волны, то есть опереться на представления о непрерывности. Кванты света Эйнштейна к 1925 году обретали все большую популярность, ряд теоретических исследований говорил в пользу этой гипотезы, однако решающую роль сыграло объяснение теорией световых квантов эффекта Комптона, явно противоречащего классической теории излучения. Возврат к корпускулярной теории света (отвергнутой в XIX веке) ставил вопрос о том, правомерно ли считать свет только волной или только потоком частиц. К такому же выводу пришел и де Бройль, но не только на основе успехов теории квантов, а в ходе размышлений над схожестью математической формы уравнений оптики и механики. Речь шла об аналогии между фундаментальными законами: принципом наименьшего действия (ПНД) в механике и принципом Ферма в оптике. Впервые такой вопрос возник в работах Мопертюи еще в XVIII веке, однако тогда он имел наивный, полуэмпирический характер, вызванный представлением о свете как о потоке корпускул, кроме того, сам Мопертюи объяснял принцип наименьшего действия неким божественным предвидением. Наиболее математически доскональную форму ПНД обретает в работах Гамильтона, которые были результатом использования оптико-механической аналогии (канонические уравнения – оптические уравнения, ПНД – принцип Гюйгенса). После Гамильтона оптико-механическая аналогия была практически забыта. Ее открыли вновь, когда развитие науки стало невозможным без ее использования.
Де Бройль заметил полную аналогию математического выражения принципов Ферма и Мопертюи при замене фазовой скорости на величину, обратно пропорциональную скорости перемещения материальной частички, откуда был сделан вывод о том, что корпускулы (материальные точки) и волны тесно взаимосвязаны.
Итак, путем преобразования старых, классических уравнений, наделения входящих в них величин новым физическим смыслом, де Бройль пришел к новым уравнениям, имеющим принципиально новую физическую интерпретацию, то есть, применил метод математической гипотезы.
Каждой движущейся частице он сопоставил действительную волну, и наоборот, любой волновой процесс связал с частицей, движущейся вдоль луча волны. Для этого необходимо было связать корпускулярные характеристики (импульс, энергия) с волновыми (частота, длина волны). Для электромагнитных волн связка была очевидной: формула Планка, связывавшая энергию и частоту излучения, и формула Эйнштейна для импульса фотона. Де Бройль обобщил эти уравнения связи на материальные частички и связанные с ними волны. Кроме того, предложенная им форма уравнений для волн материи была обладала релятивистской инвариантностью, то есть удовлетворяло едва ли не главному требованию, предъявляемому к любой физической теории. Из этого видна важная эвристическая роль теории относительности при построении новых теорий. Де Бройль также обобщил уравнения для фазы волны (частичке теперь придавался смысл плоской волны, распространяющейся в пространстве. Однако в этот момент возникли трудности с интерпретацией скорости движения волны, которая во всех случаях, кроме электромагнитных волн, оказывалась гораздо больше скорости света в вакууме – предельной скорости передачи взаимодействия. Характер волн материи де Бройля стал совсем неясным. Причина парадокса была в проникновении классических представлений о "волнах в воздухе" в теорию де Бройля. Оказалось, что для волн материи существует совершенно невозможный для классики разрыв между волной и энергией: волны могут быть лишены энергии! На этом примере виден типичный источник затруднений при интерпретации результатов математической экстраполяции: проникновение в теорию старых представлений.
Безусловным успехом теории де Бройля явилось волновое объяснение квантовых условий, оказалось, что в атоме могут существовать устойчиво электроны лишь на тех орбитах, на которые укладывается целое число фазовых волн материи. Так квантовое условие впервые обрело реальные физический смысл, хотя сам физический смысл фазовых волн оставался пока неясным. Однако речь шла о мостике между теорией Бора-Зоммерфельда и оптикой, а, вслед за ней, и классической механикой, что свидетельствовало о некоторой связи квантовой и классической теорий. Однако для уточнений характера этой связи требовалось более детальное изучение оптико-механической аналогии.
Следующий шаг в изучении проблемы был сделан Э. Шредингером. На основе аппарата классической физики ему удалось отыскать уравнение, положенное в основу волновой механики. В отличие от создателей матричной механики, отказавшихся от наглядности своей теории, Шредингер изначально надеялся на объяснение наглядных атомных явлений в рамках своей теории, стремясь связать квантовую теорию с классической физикой, показать их тесную связку.
В марте 1926 года в своей первой статье Шредингер предложил способ решения некоторых квантовых задач с помощью первоначальной формы своего уравнения. Вся новизна этой статьи была в том, что он в своих квантовых вычислениях оперировал достаточно обычными дифференциальными уравнениями в частных производных. Это привело к утверждению о том, что вместо квантовых условий, выглядевшим столь сторонними сели классической физики, можно свести задачу квантования к математическому условию, в котором не идет речь о целых числах. Дело было в том, что математический аппарат классической физики уже давно позволял решать некоторые задачи, важную роль в которых играли дискретные физические величины. Например, задачу о колебаниях закрепленной струны или мембраны, когда возбуждаются лишь те колебания, которые целое число раз укладываются в длину струны. Математически же эти колебания описываются дифференциальным уравнением в частных производных, а дискретность частот или длин волн логично возникает при решении такого уравнения. Аналогичный характер имеет целый класс так называемых волновых уравнений, имеющих в качестве решения некоторый набор собственных функций.
Уравнение Шредингера не являлось обыкновенным дифференциальным уравнением, просто подобно последнему, обеспечивало дискретность действительной физической величины: энергии стационарных состояний. Самым важным в работе Шредингера была догадка о том, какими квантовыми условиями нужно заменить краевые и начальные условия классической математической физики. Он предположил, что найденные в рамках его уравнения решения должны быть достаточно "хорошими", как это обычно полагается и в классике. На основе данного требования Шредингер установил, что энергия атома может принимать любые положительные и только дискретный набор отрицательных значений. Дискретная часть энергии полностью соответствовала теории Бора-Зоммерфельда, если ввести в уравнение Шредингера квант действия – постоянную Планка.
Формально при выводе своего уравнения Шредингер преобразовал известные в классической механике уравнения Гамильтона-Якоби к квантовому виду, наделив входящие в них величины новым физическим смыслом. Это был чисто математический, не имевший физического обоснования вывод. Математический переход был осуществлен, осталось только придать ему физический смысл.
Основой такого перехода являлась математическая аналогия между оптикой и механикой. Новая теория строилась на основе старых уравнений, не отвергая наглядной формы математических соотношений. Используя волновые уравнения, Шредингер придал каноническим уравнениям четкий геометрически наглядный смысл: распространение волновых поверхностей в пространстве. Но эта аналогия была незавершенной. Заслуга Шредингера в том, что он выявил неравноправность механики и оптики в такой аналогии, оптика играет гораздо большую роль, чем механика, а, следовательно, механику можно развить дальше по пути, предложенному оптикой. В оптике существуют два раздела: геометрическая и волновая теории, различие между которыми связано с размерами неоднородностей в среде, через которую распространяется свет. В действительности аналогия существовала лишь между геометрической оптикой и механикой, не существовала механической параллели понятиям длины волны, частоты, формы волны и т.д. Но классическая механика оказывается недостаточной при очень малых размерах траекторий, то есть тоже "зависит" от размеров неоднородностей среды. А раз так, то классическая механика полностью соответствует геометрической оптике и не подходит, когда размеры механических неоднородностей становятся сравнимы с длиной волны. Там уже нужна волновая механика, аналогичная волновой теории света.
Шредингер допусти, что все многообразие атомных явлений можно объяснить, экстраполируя волновую оптику на механику атома, то есть видоизменить и обобщить математические схемы волновой оптики применительно к условиям микромира. Так, на основе математических преобразований, он ввел понятие волновой функции (а с ней амплитуду и частоту), выразил длину волны через механические величины, показав, что аналогия с геометрической оптикой совершенно неприменима к внутриатомным явлениям (когда размеры системы сравнимы с длиной волны). Далее, используя классической волновое уравнение, Шредингер приходит к квантовому волновому уравнению.
Математическая гипотеза Шредингера состояла в экстраполяции волнового уравнения на область микропроцессов. К мысли о такой экстраполяции он пришел, развивая идею де Бройля про необходимость синтеза волновых и корпускулярных представлений, детально проанализировав оптико-механическую аналогию. Именно эта аналогия и легла в основу экстраполяции классической теории волнового движения на внутриатомную область
Вскоре после вывода своего уравнения Шредингер показал тождественность волновой и матричной механики.














