15545-1 (707366), страница 2

Файл №707366 15545-1 (Прохоров Александр Михайлович) 2 страница15545-1 (707366) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Одним из наиболее плодотворных научных направлений в то время было исследование нелинейных колебаний. Начались теоретические расчеты по теме "Стабилизация частоты лампового генератора в теории малого параметра". Обращение к задаче о стабилизации частоты не было случайным, так как диктовалось совершенно определенным "социальным заказом" того времени: радиолокация, радиосвязь и телевидение требовали все более и более стабильных по частоте генераторов. Достигнутый ранее очень высокий научный уровень работ по колебаниям позволил быстро добиться выдающихся результатов и в другой области, а именно, в изучении движения частиц в синхротроне. Были теоретически изучены процессы взаимодействия радиальных и фазовых колебаний в синхротроне, а затем поставлена и успешно выполнена задача по наблюдению и исследованию когерентного синхротронного излучения.

В области этих новых направлений активно работал А.М. Прохоров. Ежедневно в девятом часу утра он уходил из дома и возвращался всегда улыбающийся, радостный, в восемь часов вечера. Работал с подъемом и плодотворно. Эти работы легли в основу его кандидатской диссертации, которую он успешно защитил в 1946 году. Попутно он сдал последний аспирантский экзамен по спецпредмету, язык и философия были сданы до фронта.

С 1948 года Александр Михайлович впервые в нашей стране занялся исследованиями в совершенно новом направлении - радиоспектроскопии. Основными целями этой работы были, во-первых, точное определение структуры молекул и, во-вторых, использование исключительно стабильных и узких линий поглощения различных веществ для целей стабилизации частоты в радиодиапазоне.

Исследования в области радиоспектроскопии шли параллельно с работами по физике ускорителей. Исследованием ускорителей Александр Михайлович начал заниматься сразу после защиты кандидатской диссертации. Его научный руководитель, тогда член-корреспондент, а затем академик Владимир Иосифович Векслер поручил Прохорову экспериментальную проверку идеи о возможности использования ускорителя типа синхротрона для генерации сантиметровых и миллиметровых волн. Иными словами, речь шла об изучении когерентного излучения в синхротроне.

Для этого Александру Михайловичу был передан бетатрон - первый бетатрон, построенный в Советском Союзе доктором наук (впоследствии ставшим академиком) Павлом Алексеевичем Черенковым.

Вначале этот ускоритель электронов был опробован в различных режимах. В дальнейшем А.М. Прохоров совместно с сотрудниками перевел бетатрон в режим синхротронного ускорения для изучения синхротронного излучения в области сантиметровых радиоволн. Затем им была проведена большая серия сложных и тонких экспериментов по изучению когерентных свойств магнито-тормозного излучения релятивистских электронов, движущихся в однородном магнитном поле в синхротроне - синхротронного излучения. Синхротронное излучение обусловлено ускорением частиц при искривлении их траектории в магнитном поле и зависит от неоднородности распределения электронов по круговой орбите.

В результате проведенных исследований Александр Михайлович доказал, что синхротронное излучение может быть использовано в качестве источника когерентного излучения в сантиметровом диапазоне длин волн, определил основные характеристики источника, уровень мощности и предложил метод определения размеров электронных сгустков.

По общему признанию, эта классическая работа открыла целое направление исследований, которое весьма плодотворно развивается и до настоящего времени. Сегодня потери на синхронное излучение и связанные с ним эффекты в движении частиц учитываются при конструировании циклических ускорителей электронов высоких энергий. Синхронное излучение циклических ускорителей с длинами волн от мягкого рентгеновского до ультрафиолетового используется в рентгеноструктурном анализе, для рентгеновской и УФ-литографии и в ряде других областей науки и техники.

В январе 1948 года работа небольшого коллектива лаборатории была отмечена президиумом Академии наук СССР присуждением премии имени Л. И. Мандельштама. Премию получили: доктор физико-математических наук Сергей Михайлович Рытов, кандидат физико-математических наук Александр Михайлович Прохоров, кандидат физико-математических наук Марк Ефремович Жаботинский за работы: "К теории стабилизации частоты ламповых генераторов", "Об одном расширении области применения метода малого параметра", "Об одном специальном случае систем с двумя степенями свободы", "Стабилизация частоты в теории малого параметра" и "О теории стабилизации частоты". Диплом премии был подписан президентом Академии наук СССР академиком Сергеем Ивановичем Вавиловым и секретарем Академии наук СССР академиком Бруевичем.

Уже в эти годы в полной мере проявился творческий почерк А.М. Прохорова как ученого и организатора - постоянный поиск, безошибочное определение наиболее актуальных областей исследований, широкое использование самых последних достижений экспериментальных методик и теоретической мысли, в том числе и в смежных областях, и в результате - быстрое продвижение в решении самых ключевых вопросов фундаментальных исследований. Заняв передовые позиции в радиоспектроскопии, лаборатория обеспечила себе фронт работ по получению актуальной информации, столь необходимой физикам, химикам и в ряде других областей. Но здесь снова ярко проявился характер Александра Михайловича как ученого.

Не ограничиваясь получением чисто научных результатов, он ищет области практических приложений новых фундаментальных знаний. Наряду с внедрением радиоспектроскопии как метода спектрального анализа вещества в различные области науки он обращается к задаче использования узких резонансных линий спектров поглощения молекул для стабилизации частоты источников излучения СВЧ-диапазона, т.е. к задаче создания на новой основе высокоточных стандартов частоты и времени.

Именно при решении этой трудной прикладной задачи впоследствии и будут сформулированы главные принципы и заложены физические основы квантовой электроники.

12 ноября 1951 года Александр Михайлович Прохоров защитил докторскую диссертацию. Тема диссертации была связана с изучением когерентного излучения синхротрона в области сантиметровых радиоволн. Наиболее существенное в ней - метод определения размеров в сгустках электронов. Но еще до ее защиты Прохоров начал работать ассистентом на физико-техническом факультете (физтех на Долгопрудной). Из-за подвижности, живости, простоты Александра Михайловича часто принимали за студента. Физтеховцы же его любили и тянулись к нему. Многие из них защитили дипломы в лаборатории колебаний у Прохорова и, будучи способными ребятами, увлеченными наукой, там же оставались работать. Так что лаборатория росла, размах работ увеличивался, энтузиазм - тоже. Дипломниками Александра Михайловича начиная с 1951 года были: Н.Г. Басов, А.И. Барчуков, В.Г. Веселаго, Б.Д. Осипов, П.П. Пашинин, В.К. Конюхов, В.Б. Федоров, В.М. Марченко. Физтеховцы проникали и в другие секторы лаборатории, но некоторые из них впоследствии переходили к Александру Михайловичу. Это Ф.В. Бункин и Н.В. Карлов. Несколько позже у Прохорова появились новые дипломники, окончившие разные учебные заведения: Т.М. Мурина, Г.П. Шипуло. Пришли молодые специалисты: А.А. Маненков, Л.А. Кулевский, химик Г.Я. Взенкова, позже - Зуева. Все они с прибывшими еще позже успешно работают в лаборатории по сей день, став известными учеными.

К этому времени лаборатория имела широкую тематику исследования. Основной темой была радиоастрономия, у истоков которой стояли Н.Д. Папалекси и С.И. Хайкин, а в дальнейшем - В.В. Виткевич. Изучение распространения радиоволн и статистическую радиофизику возглавлял С.М. Рытов.

После защиты докторской Александр Михайлович Прохоров полностью переключился на радиоспектроскопию. Кроме упомянутых лиц, работу в лаборатории возглавляли такие крупные ученые, как А.Б. Меликян, Б.М. Чихачев, А.Е. Соломонович, А.Д. Кузьмин, Р.Л. Сороченко. Бессменным помощником в создании экспериментальных установок большой сложности еще с довоенного до настоящего времени является прецизионный механик Д.К. Бардин. В послевоенное время к нему присоединился умелец, мастер на все руки, вернувшийся с фронта инвалидом, техник В.Н. Колосов. Он проработал у Александра Михайловича до конца 1960-х годов и ушел, так как потеря глаза на фронте мешала ему работать.

В 1954 году руководитель лаборатории академик М.А. Леонтович перешел в Институт атомной энергии, возглавляемый в то время академиком И.В. Курчатовым. Заведующим лабораторией колебаний имени Л. И. Мандельштама и Н. Д. Папалекси ФИАН СССР стал А.М. Прохоров. Своим энтузиазмом он увлекал не только свой в основном молодой коллектив, но и физиков, работающих в других местах. Тот, кто стремился к серьезной, интересной работе, пытался попасть в лабораторию Прохорова.

В это время одновременно с работами в области физики синхротронного излучения А.М. Прохоров по предложению академика Д. В. Скобельцына проводит цикл исследований по радиоспектроскопии молекул, дополненных затем исследованиями по радиоспектроскопии кристаллов с использованием метода электронного парамагнитного резонанса. Уже в те далекие годы закладываются основы новой научной школы и формируется научный стиль А.М. Прохорова, в основе которого лежит глубокое понимание физики, умение выделить главное и наиболее интересное, способность быстро и эффективно концентрировать усилия на самых перспективных научных направлениях.

В научном творчестве Александра Михайловича Прохорова десятилетие 1955-1965 годов стало одним из самых плодотворных. Полученные им в это время классические результаты легли в основу лазерной физики.

Сейчас еще рано расставлять приоритеты в огромном числе научных достижений А.М. Прохорова. Однако, наверное, мы не погрешим против истины, утверждая, что главным научным подвигом Александра Михайловича (во всяком случае, до настоящего времени) является создание лазера - одного из двух-трех крупнейших научных открытий XX века. История создания лазера полна увлекательных поворотов и драматических событий, и А.М. Прохоров относится к числу главных персонажей и творцов этой истории.

Еще в 1905 году А.Эйнштейн высказал гипотезу, согласно которой энергия света состоит из дискретных порций энергии - квантов, которые испускаются (или поглощаются) атомами и атомными системами при их переходах из одного дискретного энергетического состояния в другое. Спустя несколько лет, в 1916 году, А.Эйнштейном же было введено понятие индуцированного излучения. Было постулировано, что переходы из более высокого энергетического состояния в более низкое могут происходить не только спонтанно, т.е. самопроизвольно, но и вынужденно под воздействием пришедшего извне другого кванта, имеющего энергию в точности равную энергии перехода. В результате с места события уходят уже два кванта излучения - вынуждающий и вынужденный. Важно, что оба они распространяются в направлении, в котором распространялось индуцирующее излучение, и при этом имеют одинаковую энергию, или длину волны излучения. Позже Ш.Бозе и А.Эйнштейном (1924), а затем П.А.М. Дираком (1927) были разработаны теоретические представления о процессах излучения и поглощения света.

В результате были строго обоснованы существование индуцированного излучения и полная тождественность (неразличимость) квантов этого излучения, включая фазу электромагнитных волн (так называемая, когерентность излучения).

Представление об индуцированном излучении является одним из краеугольных камней квантовой электроники и физики лазеров.

Понадобилось около трех десятков лет с момента завершения построения теории излучения и поглощения света до создания первого лазера. Однако ничего удивительного в этом нет. Предстояло сделать еще несколько поистине гигантских шагов, чтобы завершить строительство фундамента лазерной физики. Дело в том, что А. Эйнштейн и П.А.М. Дирак, развивая представления об индуцированном излучении, имели в виду прежде всего оптику, где в то время уже господствовали квантовые представления. Однако в арсенале оптики отсутствовали идеи и методы, дополнившие впоследствии представления об индуцированном излучении и приведшие к созданию лазера. Сейчас уже очевидно, что в оптическом сообществе лазер появиться принципиально не мог. Вершиной развития представлений об индуцированном излучении в среде оптиков стали работы профессора В.А. Фабриканта об оптических средах с отрицательным поглощением (с усилением в квантово-электронной терминологии). Понятия о генерировании монохроматического, когерентного и узко-направленного излучения, что, собственно, и характеризует лазер, в оптике не возникало и не могло в то время возникнуть. Эти идеи и понятия пришли из радиофизики и радиоспектроскопии вместе с понятиями о монохроматическом излучении, инверсной населенности, резонаторах, усилении и генерации радиоизлучений в середине 50-х годов XX века. В среде радиофизиков, оперирующих, в отличие от оптиков, в основном волновыми представлениями, эти понятия уже давно и прочно укоренились и широко использовались в работе. Именно в этих областях успешно работали А.М. Прохоров и его молодые сотрудники. Имея богатый опыт и знания в области радиофизики и прекрасно владея аппаратом теории колебаний, с одной стороны, и глубоко проникнув в область радиоспектроскопии - с другой, Александр Михайлович впервые синтезировал основные идеи и методы радиофизики с квантовыми представлениями оптики.

В 1954 году А.М. Прохоровым (совместно с Н.Г. Басовым) были предложены методы формирования молекулярных пучков с последующей сортировкой возбужденных и невозбужденных молекул и пропусканием пучка возбужденных молекул через объемный резонатор. Здесь впервые удалось соединить в одно целое представления об индуцированном излучении и инверсной населенности с представлениями о резонаторах, обратной связи и генерации когерентного электромагнитного излучения. Всего этого было уже достаточно для создания квантового генератора, работающего на энергетических переходах в радиодиапазоне в молекулярных пучках (т.е. мазера). Первым таким генератором стал аммиачный мазер, излучающий в радиодиапазоне. В тот же период времени была создана исчерпывающая теория молекулярного генератора и усилителя радиоизлучения (1955, А.М. Прохоров совместно с Н.Г. Басовым).

Совершенно естественно, что после триумфального завершения работ по мазерам возник вопрос о движении в сторону видимого участка спектра электромагнитных колебаний, т.е. о создании лазеров оптического диапазона.

Характеристики

Тип файла
Документ
Размер
167,49 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
261
Средний доход
с одного платного файла
Обучение Подробнее