95644 (702735), страница 16

Файл №702735 95644 (Трансформации социально-экономических систем в КНР и Венгрии) 16 страница95644 (702735) страница 162016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 16)



3.2 Методика анализа

Базовый анализ данных

Базовый анализ данных включает:

  • изучение распределения частот значений переменной (изучение вариационных рядов)

  • определение статистик, связанных с распределением частот (среднее арифметическое, мода, медиана, показатели вариации)

  • определение показателей формы распределения

  • проверку гипотез (гипотез о связях между переменными, гипотезы о различиях)

С распределением частот используют для анализа следующие статистики: среднее арифметическое, мода, медиана, размах межквартирный размах, стандартные отклонения, коэффициент вариации, асимметрия и эксцесс.

Среднеарифметическое используется, когда данные собраны с помощью интервальной или относительной шкалы. Среднее арифметическое определяется по формуле:

,

где Хij – значение i-й переменной по j-му объекту;

n – число объектов в выборке.

Мода – значение переменной, встречающееся чаще других. Мода является хорошим показателем центра распределения. В табл. 3.1 для показателя – доступ к санитарно техническим системам чаще всего встречается значения равное 74 и 78 %.

Медиана – это значение переменной в середине ряда данных, расположенных в порядке возрастания или убывания. В табл. 3.4 представлен показатель – доступ к санитарно техническим системам для выборки в 20 стран в порядке возрастания этого показателя.

Для данных измеряемых с помощью интервальных или относительных шкал определяют следующие показатели вариации:

  • рамках вариации;

  • межквартальный размах;

  • дисперсию;

  • стандартное отклонение;

  • коэффициент вариации.

Разmах i=Xmaxi ‑ Xmini

Для показателя – городское население (процент от общего населения) Разmах=91-27=64%

Межквартальный размах – это разность между 75 и 25 процентилями.

Среднеквадратическое (стандартное) отклонение определяется по формуле:

.

Коэффициент вариации вычисляется по формуле:

.

Коэффициент вариации определяется для данных, измеряемых с помощью относительной шкалы.

Для базового анализа оценивают закон распределения данных с помощью асимметрии и эксцесса.

Асимметрия – это характеристика распределения, которая оценивает симметрию расположения значений данных относительно средней.

При симметричном распределении значения среднего арифметического, моды и медианы равны между собой, а частоты любых двух значений переменной, которые расположены на одном и том же расстоянии от центра распределения, одинаковы..

Эксцесс (kurtosis)- это показатель, показывающий островершинность или плосковершинность кривой вариационного ряда по сравнению с нормальным распределением.

Эксцесс случайной величины, имеющий нормальный закон распределения, равен нулю. Если эксцесс имеет положительный знак, то распределение более островершинной, при отрицательном знаке более плосковершинной.

Проверка гипотезы заключается в выполнении следующих этапов:

  1. формулируется нулевая гипотеза Н0 и альтернативная гипотеза Н1;

  2. выбирается статистический критерий проверки гипотезы;

  3. выбирается уровень значимости ;

  4. определяется объем выборки, собираются данные, вычисляется значение выборочной статистики;

  5. определяется вероятность, которую примет статистика критерия (см. этап b) при выполнении нулевой гипотезы, а для альтернативной гипотезы определяется критическое значение статистики, которое делит интервал на область критерия и непринятия нулевой гипотезы;

  6. сравнивается полученная вероятность по результатам выборки с заданным уровнем значимости, а для альтернативного варианта определяют, попадет ли выборочное значение в область критерия или отклонения нулевой гипотезы;

  7. формулируется решение принять или отвергнуть нулевую гипотезу;

h) излагается статистическое решение с позиций экономического смысла.

Корреляционный анализ

Корреляционный анализ - один из методов статистического анализа взаимозависимости нескольких признаков.

В процессе статистического исследования связей между экономическими явлениями определяют следующие виды коэффициентов корреляции:

  1. коэффициент парной корреляции;

  2. корреляционное отношение;

  3. множественный коэффициент корреляции;

  4. частный коэффициент корреляции;

  5. коэффициент ранговой корреляции;

  6. коэффициент канонической корреляции.

Корреляция – стохастическая (случайная, вероятностная) связь двух или более случайных переменных или рядов данных явлений. При помощи корреляции можно выразить интенсивность и направленность связей между исследуемыми экономическими явлениями.

Самая простая форма корреляции это корреляция между двумя переменными (х и у).

Тесноту линейных связей двух случайных переменных х и у (у= а01х) показывает коэффициент парной корреляции (линейный коэффициент корреляции).

В процессе статистического исследования связей между экономическими явлениями встречаются и такие, в которых корреляция имеет форму кривой, которая может быть гиперболой, параболой и т.д. Степень криволинейной стохастической связи между х и у измеряется корреляционным отношением.

В случае сложных связей между массовыми экономическими явлениями появляется несколько независимых переменных, существенно влияющих на зависимую. Общее влияние этих переменных измеряется с помощью показателей корреляции. Показателем тесноты линейной зависимости случайной переменной у от к случайных переменных х1, х2…хk являет множественный коэффициент корреляции.

Так же рассматривается теснота зависимости между двумя переменными при исключении влияния на эту зависимость остальных переменных. Показателем тесноты зависимости в данном случае является частный коэффициент корреляции.

В некоторых статистических исследованиях существует вероятность того, что некоторые переменные нельзя точно измерить, а даже если такие измерения и получены, есть вероятность того, что в некоторых случаях значения показателей недостоверны. В таких случаях можно проранжировать объекты по значениям показателей одного и второго, получив последовательность. Зависимость между двумя этими последовательностями оценивается коэффициентом ранговой корреляции Спирмана. Коэффициент ранговой корреляции является показателем измерения силы линейной зависимости между двумя наборами рангов.

Корреляционные связи между двумя группами случайных величин оцениваются коэффициентом канонической корреляции. Эта зависимость определяется при помощи новых аргументов канонических величин, вычисленных как линейные комбинации исходных признаков.

Коэффициент парной корреляции

Коэффициент парной корреляции является мерой линейной статистической зависимости между величинами и определяется для генеральной совокупности на основе выборки.

А. Генеральная совокупность с двумя признаками.

Для генеральной совокупности с двумя признаками определяются следующие пять параметров (два математических ожидания, две дисперсии, один коэффициент парной корреляции):

  1. Математическое ожидание х: Mx=μx

  2. Математическое ожидание у: My=μy

  3. Дисперсия х: Dx=σ2x

  4. Дисперсия у: Dy=σ2y

  5. Коэффициент парной корреляции:

Квадрат коэффициента корреляции называют коэффициентом детерминации.

а) Проверка значимости параметров связи

Значимость коэффициента корреляции показывает зависимость или независимость признаков.

Если коэффициент незначим, то признаки x и y считаются независимыми.

Проверяется гипотеза Н0:  = 0. Для этого вычисляется tнабл.. и находится tтабл.. по таблице t– распределения Стьюдента

tтабл. находится для определенного значения  (=10%, 5%, 2%, 1%) и =n-2

Если tнабл.tтабл., то гипотеза H0 отвергается с вероятностью ошибки .

Если tнабл.≤tтабл, то гипотеза не отвергается

при 100 или

б) Интервальная оценка параметров связи

Интервальные оценки обычно находят для значимых параметров связи.

Находим значение статистики Z по формуле

.

Находим точность интервальной оценки по формуле

(t – находится по таблице t-распределения для заданного )

Интервальная оценка для MZ имеет вид

.

С помощью обратной функции получаем интервальную оценку коэффициента корреляции  (используется таблица Фишера-Иейтса)

Если коэффициент корреляции значим, то коэффициенты регрессии также значимо отличаются от нуля (с тем же уровнем ).

Интервальные оценки для коэффициента регрессии получают по формулам:

;

,

где t имеет распределение Стьюдента с =n-2 степенями свободы.

Примечание. Для значимого коэффициента корреляции некоторые авторы рекомендуют оценку  при небольших выборках

или

Характеристики

Тип файла
Документ
Размер
1,66 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7026
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее