63364 (695304), страница 2

Файл №695304 63364 (Циклические коды. Коды БЧХ) 2 страница63364 (695304) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Например, минимальные многочлены элементов соответствуют минимальному многочлену элемента a1, минимальные многочлены элементов соответствуют минимальному многочлену a3 и т.п.

Пример. Определить значение порождающего многочлена для построения примитивного кода БЧХ над GF(2) длины 31, обеспечивающего tu=3.

Определяем значения m и j.

Из таблицы минимальных многочленов в соответствии с m=5 и j=5 получаем

Заданные исходные данные: n и tu или k и tu для построения циклического кода часто приводят к выбору завышенного значения m и как следствие этого к неоправданному увеличению длины кода. Такое положение снижает эффективность полученного кода, так как часть информационных разрядов вообще не используется.

Пример. Требуется построить циклический код, исправляющий двух кратные ошибки, если длина информационной части кода k=40.

Согласно выражению для примитивного кода n=2m-1, ближайшая длина кода равна 63, для которой m=6, а r=mtu=12. Следовательно, код будет иметь n=63, k=51. Неиспользованных информационных разрядов будет 11(51-40).

Подобное несоответствие в ряде случаев можно устранить, применяя непримитивный код БЧХ.

Непримитивным кодом БЧХ, исправляющим tu ошибок, называется код длины n над GF(q), для которого элементы являются корнями порождающего многочлена.

Здесь bi-непримитивный элемент GF(qm), а длина кода n равна порядку элемента bi.

Примечание.

Порядком элемента bi является наименьшее n, для которого .

Пример. Порядок элемента b3 поля GF(26) равен 21, так как .

Порождающий многочлен непримитивного кода БЧХ, по аналогии с примитивным кодом, определяется из выражения - минимальные многочлены элементов поля GF(qm), которые являются корнями g(x); i - степень непримитивного элемента b.

Пример. Определить значение g(x) для построения непримитивного кода БЧХ над GF(2) длины n=20, исправляющего двух кратные ошибки.

Из таблицы непримитивных элементов GF(2m) (см. таблицу 7 приложения) выбираем поле, элемент b которого имеет порядок больший, но близкий к заданному n.

Приложение

Таблица 1

Разложение бинома хn+1 на неприводимые сомножители

Степень бинома

Последовательности степеней корней неприводимых сомножителей

Неприводимые сомножители

7

1 2 4
3 6 5

13
15

15

01 02 04 08
03 06 12 09
05 10
07 14 13 11

023
037
007
031

31

01 02 04 08 16
03 06 12 24 17
05 10 20 09 18
07 14 28 25 19
11 22 13 26 21
15 30 29 27 23

045
075
067
057
073
051

63

01 02 04 08 16 32
03 06 12 24 48 33
05 10 20 40 17 34
07 14 28 56 49 35
09 18 36
11 22 44 25 50 37
13 26 52 41 19 38
15 30 60 57 51 39
21 42
23 46 29 58 53 43
27 54 45
31 62 61 59 55 47

103
127
147
111
015
155
133
165
007
163
013
141



Примечание. В разложение всех биномов входит сомножитель 03 с корнем 00. Все сомножители представлены в восьмеричной форме.

Таблица 2

Элементы поля GF(16) как расширение GF(2) по примитивному многочлену a(z)=z4+z+1

В двоичном виде

В виде многочлена

В виде степени

0000

0

0

0001

1

a0

0010

z

a1

0100

z2

a2

1000

z3

a3

0011

z+1

a4

0110

z2+z

a5

1100

z3+z2

a6

1011

z3+z+1

a7

0101

z2+1

a8

1010

z3+z

a9

0111

z2+z+1

a10

1110

z3+z2+z

a11

1111

z3+z2+z+1

a12

1101

z3+z2+1

a13

1001

z3+1

a14



Таблица 3

Элементы поля GF(16) как расширение GF(4) по примитивному многочлену f(z)=z2+z+2

В четвертичном виде

В десятичном виде

В виде многочлена

В виде степени

00

0

0

0

01

1

1

a0

10

4

z

a1

12

6

z+2

a2

32

14

3z+2

a3

11

5

z+1

a4

02

2

2

a5

20

8

2z

a6

23

11

2z+3

a7

13

7

z+3

a8

22

10

2z+2

a9

03

3

3

a10

30

12

3z

a11

31

13

3z+1

a12

21

9

2z+1

a13

33

15

3z+3

a14



Таблица 4

Элементы поля GF(4) как расширение GF(2) по примитивному многочлену f(z)=z2+z+1

В двоичном виде

В виде многочлена

В виде степени

В десятичном виде

00

0

0

0

01

1

a0

1

10

z

a1

2

11

z+1

a2

3



Таблица 6

Элементы поля GF(8) как расширение GF(2) по примитивному многочлену f(z)=z3+z+1

В двоичном виде

В виде многочлена

В виде степени

000

0

0

001

1

a0

010

z

a1

100

z2

a2

011

z+1

a3

110

z2+z

a4

111

z2+z+1

a5

101

z2+1

a6



Таблица 7

Непримитивные элементы поля GF(2m)

¹

m

GF(2m)

b

n

1

4

GF(24)

b3

5

b5

3

2

6

GF(26)

b3

21

b7

9

b9

7

3

8

GF(27)

b3

85

b5

51

b15

17

b17

15

4

9

GF(29)

b7

73

5

10

GF(210)

b3

341

b11

93

b31

33

b33

31

6

12

GF(212)

b3

1365

b5

819

b7

585

b9

455

b13

315

b15

273

b21

195

b45

91

b63

65

b65

63



Таблица 8

Минимальные неприводимые многочлены в поле GF(2m)

2tu-1

m

2

3

4

5

6

7

8

9

10

1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35

7

13
15

31
37
07
31

45
75
67
57
73

103
127
147
111
015
155

211
217
235
367
277
325
203

435
567
763
551
675
747
453
727
023
545
613
543
433
477
615
435
537
771

1021
1131
1461
1231
1423
1055
1167
1541
1333
1605
1027
1751
1743
1617

1401

2011
2017
2415
3771
2257
2065
2157
2653
3515
2773
3753
2033
2443
3573
2461
3041
75
3023

Такими являются GF(26) и b3, порядок которого n=21.

Характеристики

Тип файла
Документ
Размер
1,85 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7026
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее