63251 (695260), страница 2
Текст из файла (страница 2)
При зависимых компонентах выражение для
существенно усложняется и этот случай здесь рассматривать не будем.
Отметим, что ,т.е. является квадратом длины(нормы) вектора помехи.
Следовательно,
(7)
Отбросив множители, не зависящие от номера сигнала i, решающее правило(3) можно представить в виде
(8)
Приемник, работающий по алгоритму(8), называется байесовским или приемником максимальной апостериорной вероятности. Если апостериорные вероятности элементов одинаковы, то решающее правило упрощается:
(9)
Соответствующий приемник называется приемником максимального правдоподобия. Правило(9) раскрывает механизм работы оптимального приемника.
Получив вектор y, с помощью обработки реализации y(t) необходимо вычислить расстояние от его конца до концов векторов всех возможных сигналов и вынести решение в пользу того сигнала, для которого величина
будет минимальной, так как именно в этом случае функция (9) достигнет максимума. Коротко можно сказать, что оптимальный приемник выносит решение в пользу сигнала «ближайшего» к y(t).
Выражение(9) достигает максимума при минимуме показателя экспоненты. Следовательно, правило (9) можно записать в ином виде:
или, учитывая векторное представление
(10)
Здесь первый член в скобках не зависит от номера i. Последний член – есть энергия i-того сигнала. Если энергии всех сигналов одинаковы, что обычно имеет место, то этот член также не зависит от номера i. Таким образом, решающее правило можно записать так:
(11)
Справедливость такого перехода обусловлена тем, что второй член в (10) имеет знак минус и выражение (10) минимизируется, если этот член достигает максимума. Выражение(11) уже позволяет определить структуру оптимального приемника. Однако удобнее это выражение представить в другом виде. Действительно, учтем, что
(12)
Тогда окончательно получим
(13)
Эта структура называется оптимальным корреляционным приемником, так как основная операция, лежащая в его основе, это операция корреляции y(t) со всеми возможными сигналами .
Из проведенного рассмотрения следует, что в состав оптимального приемника должны входить генераторы, вырабатывающие образцы сигналов , тождественные тем, которые используются на передатчике. Кроме того, между работой генераторов передатчика и приемника должна соблюдаться синхронность и синфазность, т.е. обеспечиваться идеальная синхронизация.
3 Оптимальный некогерентный прием дискретных сигналов и его помехоустойчивость
Ранее было показано, что если импульсный отклик линии представляет собой -функцию, то такая линия только ослабляет передаваемый сигнал, не изменяя его формы. Пусть ослабление сигнала а — медленно изменяющаяся случайная величина, практически постоянная на интервалах длительностью Тс. Если бы а была постоянной и известной величиной, то осуществлялся бы прием точно известных сигналов с решающим правилом
(1)
При случайном значении а следует усреднить результат по закону распределения р(а); тогда при равновероятностных сигналах решающее правило примет вид
(2)
Из соотношения (2) следует, что при таком подходе структура оптимального приемника останется прежней (инвариантной к случайным значениям а). Вероятность же ошибок (при прочих равных условиях) возрастает. При случайном значении а эти выражения необходимо усреднить по р(а). В частности, для противоположных сигналов усредненное значение вероятности ошибки Р0ш должно определяться в соответствии с выражением
(3)
Для распределения р(а), подчиняющегося закону Рэлея можно показать, что
(4)
где . Нетрудно видеть, что при одинаковых значениях а вероятность ошибок, рассчитанная по формуле (4), значительно превышает вероятность ошибок. Физическая причина увеличения вероятности ошибок ясна: возрастание а приводит к некоторому уменьшению вероятности ошибок, однако падение а приводит к значительному возрастанию этой вероятности вследствие отмеченного выше «порогового эффекта».
Рассмотрим далее случай, когда линия вносит в сигналы только случайный сдвиг начальной фазы, имеющий место в подавляющем большинстве реальных ситуаций. При этом, если
то сигналы на выходе линии (входе приемника)
(5)
Выходные сигналы (5) можно представить в виде двух составах со случайными амплитудами, но постоянными фазами:
(6)
где а и Ь могут, в отличие от предыдущего случая, принимать и положительные и отрицательные значения.
Из (6) видно, что действие линии можно свести к появлению в точке приема двух составляющих сигнала: косинусоидальной и синусоидальной. Анализ этого случая, связанный с выполнением усреднения по обоим случайным параметрам а и Ь, довольно громоздок.
Приведем конечное выражение для решающего правила:
(7)
Из него следует, что оптимальный приемник производит корреляцию принятой реализации у(t) с образцами обоих слагаемых сигнала. Возведение результатов в квадраты перед сложением и выбором максимума вызвано тем, что величины а и Ь могут быть как положительными, так и отрицательными.
Этот алгоритм можно реализовать и с помощью согласованных фильтров. Здесь содержатся детекторы огибающих выходных колебаний согласованных фильтров, после которых и производится отсчет. Физика процессов также ясна: если на вход согласованного с сигналом фильтра подать сдвинутый по фазе сигнал, то в силу линейности фильтра произойдет запаздывание колебания и на выходе фильтра. Поэтому отсчет в момент t= TС не совпадет с максимумом напряжения. В силу случайности этого сдвига наилучшей стратегией оказывается отсчет огибающей, а не мгновенного значения колебания.
Сравним случай приема сигналов при отсутствии случайной фазы (т. е. точно известных по форме сигналов) и при наличии случайной фазы. Первый случай принято называть когерентным, а второй — некогерентным приемом (именно этот случай чаще всего имеет место на практике).
(8)
Сравнивая выражения для когерентного и некогерентного приема при одинаковом значении вероятности ошибки, можно установить, какой энергетический проигрыш дает применение некогерентного приема по сравнению с когерентным. Расчеты показывают, что для обеспечения при некогерентном приеме требуется увеличение энергии сигнала на 15-30% по сравнению с когерентным, т. е. проигрыш невелик.
В более общем случае неидеальность линии обусловливает случайные изменения амплитуды и фазы. Вероятность ошибок от этого увеличивается, так как независимо действуют оба рассмотренных фактора. Можно показать, что в этом случае вероятность ошибок при распознавании бинарных ортогональных сигналов равна
(9)
где - среднее значение энергии принимаемых сигналов.
4 Оптимальный и квазиоптимальный прием непрерывных сигналов и его помехоустойчивость
Перейдем к рассмотрению особенностей оптимального приема при передаче непрерывных сообщений. В этом случае передаваемое сообщение х(t) может иметь очень большое (практически бесконечное) число возможных реализаций, каждая из которых представляет собой непрерывную функцию времени. Поэтому в геометрической интерпретации сообщениям и сигналам соответствуют не отдельные точки (или векторы с фиксированной длиной) в многомерных пространствах(как это было при передаче дискретных сообщений), а континуум линий сообщений и сигналов, описываемых концами векторов х и s. Исследования показывают, что в этой ситуации оптимальный прием связан с формированием на приемной стороне такого сигнала s(t), который бы обеспечивал максимум максиморум апостериорной плотности вероятности, определяемой выражением.
Применительно к каналу с гауссовским белым шумом и равновероятными сообщениями указанное условие сводится к минимизации величины
(1)
Чтобы сформировать сигнал s(t), на приемной стороне нужно использовать принятое сообщение х(t), которое представляет собой результат обработки входной реализации у(t) приемником. Сообщение х(t) называют оценкой переданного сообщения х(t). Формирование сигнала s(t) представляет собой модуляцию несущей сигнала колебанием х(t) по тому же закону и с теми же параметрами, что и на передающей стороне.
Сформированный в приемнике сигнал s(t) используется при обработке входной реализации у(t) и последующем формировании оценки сообщения х(t), которая, в свою очередь, необходима для создания сигнала s(t). Нетрудно понять, что указанная процедура может быть выполнена только в устройстве следящего типа, с использованием обратной связи по формируемой оценке сообщения х(t).
В геометрической интерпретации минимизация выражения означает, что оптимальный приемник всегда относит входную текущую реализацию у к ближайшей линии сигналов и в соответствии с этим формирует на выходе оценку сообщения х(t). Из-за влияния шума оценка х(t) отличается от переданного сообщения х(t). Это отличие обычно характеризуют величиной среднеквадратической ошибки (см. л. 1.3). Оптимальный прием обеспечивает минимальное значение этой ошибки по сравнению с любым другим способом приема.
Теория оптимального приема непрерывных сообщений, часто называемая также теорией оптимальной демодуляции аналоговых видов модуляции, или теорией нелинейной фильтрации, представляет важный раздел общей теории связи, основы которой были заложены в работах А.Н. Колмогорова, В.А. Котельникова, Н. Винера, К. Шеннона и ряда других отечественных и зарубежных ученых.
Задачей приемного устройства являются извлечение переданного сообщения х(t) из входного колебания у(t). Однако из-за помех и искажений эта процедура не может быть выполнена точно, и восстановить сообщение на выходе приемника можно только приближенно. Такое приближенное сообщение называют оценкой и обозначают х(t).
Критерием близости х(t) и х(t) в теории и технике связи принята СКО, в соответствии с которой
(2)
где скобки означают операцию усреднения реализации по времени.
Оптимальный приемник непрерывных сообщений обеспечивает наименьшую возможную в заданных условиях величину СКО. Определим эту ошибку.
Основываясь на теории ортогональных разложений передачу любого непрерывного сообщения можно заменить передачей совокупности числовых коэффициентов (параметров). Пусть непрерывное сообщение х(t) представлено рядом
(3)
При известной системе базисных функций передача сообщений x(t) эквивалентна передаче п значений коэффициентов Следовательно, передаваемый сигнал можно рассматривать как функцию времени и коэффициентов
, т. е.
(4)
Влияние помех приведет к тому, что каждый коэффициент , будет принят с некоторой погрешностью. В результате оценка сообщения примет вид
(5)